
Functional Logic Programming:
FL−subsumption check in Prolog

June 17, 2010

Introduction

FL−is one of the most simple DL available. FL−(being a DL) is decidable, moreover
its limited expressive power allows us to define an algorithm to check subsumption that
is PTime. Due to its simplicity the algorithm for deciding subsumption works only
on the structure of the formula, i.e. only at the syntactical level. Other Description
Logics (e.g. ALC) do not enjoy this property because they are too expressive. In such
cases algorithms based on Tableaux are usually implemented.

We developed a prolog program that, given two FL−complex concepts C and D,
decides whether C v D. In particular after loading the program, at the prompt it is
possible to pose the query:

?- subs(c , d).

and the interpreter returns True if c v d, and False otherwise.1. Moreover it is possible
to define complex concept to use inside other concepts by typing:

?- define(c, all(child,adult)).

?- subs(and(all(child,adult),some(child)), c)

The list of defined concepts can be retrieved with

?- listdefine.

1Concepts are expressed using the syntax defined in Section 2.

1

1 FL−

FL−is a structural DL with a limited expressive power where we can only talk about
concepts. Roles can be used to express complex concepts, but we cannot say anything
directly about them.

1.1 Syntax

Considering A as an atomic concept, R as a role and C,D as complex concepts, we
can define FL−syntax in one line:

C,D := A|C uD|∃R|∀R.C

We also introduce a different syntax to express FL−that is called functional syntax :
concept := < atomic-concept > |

: and < concept > < concept > |
: some < atomic-role > |
: all < atomic-role >< concept >

Once concepts are defined (in either syntax) we can define the T Box by defining
the inclusion assertions, that in FL−are limited to the ones of the form:

C v D

with C,D complex concepts. To better understand what this means we are going to
briefly introduce the semantic of FL−, althought this is not needed since the sub-
sumption problem is solved at a purely syntactical level.

1.2 Semantics

As for all DLs, an interpretation I is a tuple (∆I , ·I) where

• ∆I is a non empty set

• ·I is a mapping function that associates to every concept C a subset CIof ∆I

and to every role R a subset RI of ∆I ×∆I

We can define the extension of ·I for the FL−operators as:

(C uD)I = CI ∩DI

(∀R.C)I = {x ∈ ∆I |∀y.(x, y) ∈ RI → y ∈ CI}
(∃.R)I = {x ∈ ∆I |∃y.(x, y) ∈ RI}

Now we can define more formally the subsumption problem as:

C v D iff CI ⊆ DI ∀I

2

1.3 Subsumption checking algorithm

Given two complex concepts C,D we want to tell whether C v D. The idea of this
algorithm is that in order for CI to be a subset of DI , all the concepts appearing in
D (or a more specific version) must also appear in C.

To do so we need to proceed as follows

Convert C and D into a normal form. This conversion is split in two steps:

1. Flatten the formula,

2. Factorize the universal quantifiers.

In the first step we take all the conjunctions that are nested and we flatten them:
eg. A u (B u C) become A u B u C. Note that this step is necessary since we
define a syntax in which u is binary.

The second step takes all the universal quantifiers that have the same role, and
returns the conjunction of the concepts: eg ∀R.C u ∀R.D becomes ∀R.(C uD).

Recursively check subsumption of the concepts in C and D . For all the elements
Di of D, we need to check:

If Di is an atomic-concept or an existential: there must exists a Ci in C s.t.
Ci = Di

If Di is a universal: then, given Di = ∀R.D′ there must be Ci = ∀R.C ′ in C
s.t. C ′ v D′.

This short description is, in fact, the whole algorithm to check subsumption.

2 Prolog implementation

By choosing appropriate data structures we can exploit many features of prolog to write
this program. In particular we decided to use a syntax that is similar to the functional
one presented in 1.1. In particular we map the FL−elements to the following prolog
elements:

• Atomic Concepts → Constants (c)

• Atomic Roles → Constants (r)

• Conjunction → and(C1, C2)

• Existential → some(R)

• Universal → all(R,C)

The use of functors allows us to exploit unification to do pattern matching. Here
we define and/2 as a binary atom, but during the flattening step we will need to have
more conjuncts. Thus we decided to use lists (internally) to represent conjunction. ie.
and(a, and(b, c)) becomes [a,b,c].

The implementation strictly resambles the description above:

3

1. normalize/2 takes a FL−formulas and returns the normal form,

2. r_subs/2 takes two FL−normalized concepts and performs the syntactic check.

A short description of the different rules is provided here for reference. Unfortunately
prolog programs require much more effort to be understood from the code, so we
thought it would be helpful to provide a general description of what those rules are
for.

2.1 Normal Form

We build the normal form by performing the steps described previously. The only
addition is step 1 that is used to implement the define/2 functionality.

1. remove_aliases/2 recursively navigates C and D and subsitutes the complex
concepts that have been defined using the define/2 command. This com-
mand modifies the program facts database, using the assert/1 clause: eg.
assert(alias(c,and(a,b))).

2. All nested conjunctions are flattened. ie. A u (B u C) → A u B u C. This
is easy to do with lists: [A,[B,C]] → [A,B,C]. In particular this operation is
performed by flatten/2, that performs a smart list concatenation (concat/3)
in which nested list are flattened (flatlist/2).

3. Conjunctions of universal quantifications are factorized. ie ∀R.C u ∀R.D →
∀R.(C uD): [all(R,C),all(R,D)] → [all(R,[C,D])]. This is performed by
factorize/2 that first sorts the list of concepts (sort_concept/2) and then
performs the real recursive factorization factorize_/2. The sorting is performed
in order to have a simpler factorization factor: this way if two universal refer
to the same role they are adjacent in the list, and there’s no need to scan the
whole list. The sort itself is an insertion sort (insert_sort/3) that makes use
of a partial ordering function (bigger/2)2.

2.2 Structural check

There are 4 rules with similar names:

• subs/2 is the main rule, that calls lsubs/2 with a cut to avoid backtracking
(once). This was added because subsumption is a decision problem, so we are
interested in a Yes/No answer, and we don’t want to search for alternatives
answers.

• lsubs/2 calls r_subs/2 after normalizing C and D,

• r_subs/2 performs the real recursive subsumption check by calling r_subs_i/2

on the head element of D, and making the recursion on the tail;

2Note the use of negation as failure to avoid the need of defining a converse rule smaller/2

4

• r_subs_i/2 uses find/2 to look in C for the element Di in case Di it’s ei-
ther an atomic concept or an existential. Otherwise, if Di = ∀R.D′ it calls
get_role_concept/3 that returns Cj = ∀R.C ′ (if present in C) and then runs
the subsumption check on C ′ and D′.

3 Problems encountered

Most of the problems were related to the use of not purely logical predicates like
atom and cut. In fact it is not possible to run this query:

?- subs(X,c).

What is still possible is to ask for ?- r_subs(X,[c]). by skipping the normalization.
This query will return (infinitely many) correct results. We consider this not to be a
big loss, since given a concept D there are infinitely many concepts C s.t. C v D.

We didn’t have to debug too much, since we tried to keep rules simple and as atomic
as possible. Nevertheless when the program was almost complete, a nasty typo forced
us to spend a lot of time on debugging. In this case we found the graphical trace
interface (guitracer/0) to be particularly convinient to use.

After spending some time debugging we decided to introduce some change manag-
ment in our project by adding test units. We found out that SWI-Prolog defines some
interesting methods to write real test units, so we decided to write test for relevant
rules and include also some subsumption examples:

C D C v D
1. ∀CHILD.Adult u ∃CHILD ∀CHILD.Adult True
2. Adult uMale Adult True
3. Adult uMale uRich Adult uMale True
4. ∀CHILD.(Adult uMale) ∀CHILD.Adult True
5. ∀CHILD.Adult ∃CHILD False
6. ∃CHILD ∀CHILD.Adult False
7. ∀CHILD.Adult u ∃CHILD ∀CHILD.Man False

4 Conclusions

We believe that this project was a success and our goals were achieved because the
code operates correctly, and we were able to use many of the features inherent in the
prolog programming language. Also, with the short descriptions of the program that
we have included, we think that the code is quite understandable and even moreso,
the examples make it clear how it is designed to be used and allow for other users to
test the subsumption of their own complex concepts.

5

References

[1] http://www.inf.unibz.it/~franconi/dl/course/slides/struct-DL/

flminus.pdf

6

http://www.inf.unibz.it/~franconi/dl/course/slides/struct-DL/flminus.pdf
http://www.inf.unibz.it/~franconi/dl/course/slides/struct-DL/flminus.pdf

	FL-
	Syntax
	Semantics
	Subsumption checking algorithm

	Prolog implementation
	Normal Form
	Structural check

	Problems encountered
	Conclusions

