A Formal Foundation of FDI Design via Temporal Epistemic Logic

Marco Gario gario@fbk.eu

Fondazione Bruno Kessler University of Trento

2016-03-03

On-Board Autonomy

On-Board Autonomy: Faults?

Fault Detection, Identification and Recovery FDI(R)

Fault Detection, Identification and Recovery FDI(R)

FDIR development is performed late in the system development life-cycle when changes are **costly** or **impossible**

Conservative or over-blown designs:

- Monitor everything
- Disable FDI during critical situations
- **Certification** is difficult

How to design an FDI ?

- Limited observability (Sensors)
- Interaction of multiple faults and nominal operations

How to specify an FDI?

How to specify an FDI?

There is **no standard** way of specifying an FDI! Requirements are usually **prescriptive** (e.g. thresholding) ⇒ **Hard** to certify that objectives are met!

Ultimate Goals

- Specification of FDI:
 - Early-validation of the FDIR design
 - Simplification of the certification process
- Verification of FDI:
 - Higher dependability of systems
 - Reduction of costs in terms of design effort, implementation and reuse of existing FDIR components

- 1. Formal FDI design: [AAAI13, DX13, TACAS14, LMCS15]
 - Alarm Specification Language (ASL_K) & Formal grounding on Temporal Epistemic Logic KL₁
 - Diagnosability testing for ASL_K
 - Pareto Optimal Sensor Placement [FMCAD14]
 - Synthesis of FDI components

- 1. Formal FDI design: [AAAI13, DX13, TACAS14, LMCS15]
 - Alarm Specification Language (ASL_K) & Formal grounding on Temporal Epistemic Logic KL₁
 - Diagnosability testing for ASL_K
 - Pareto Optimal Sensor Placement [FMCAD14]
 - Synthesis of FDI components
- 2. Validation of Timed Failure Propagation Graphs based on Satisfiability Modulo Theory [AAAI15]

- 1. Formal FDI design: [AAAI13, DX13, TACAS14, LMCS15]
 - Alarm Specification Language (ASL_K) & Formal grounding on Temporal Epistemic Logic KL₁
 - Diagnosability testing for ASL_K
 - Pareto Optimal Sensor Placement [FMCAD14]
 - Synthesis of FDI components
- 2. Validation of Timed Failure Propagation Graphs based on Satisfiability Modulo Theory [AAAI15]
- 3. First model-checking approach for *KL*₁ over infinite state transition systems [AAMAS16]

- 1. Formal FDI design: [AAAI13, DX13, TACAS14, LMCS15]
 - Alarm Specification Language (ASL_K) & Formal grounding on Temporal Epistemic Logic KL₁
 - Diagnosability testing for ASL_K
 - Pareto Optimal Sensor Placement [FMCAD14]
 - Synthesis of FDI components
- 2. Validation of Timed Failure Propagation Graphs based on Satisfiability Modulo Theory [AAAI15]
- 3. First model-checking approach for *KL*₁ over infinite state transition systems [AAMAS16]
- 4. Implementation [IMBSA14, TACAS16] and Application within ESA projects AUTOGEF and FAME [DASIA12, DASIA14, IMBSA14b]

Model-based techniques for FDI design for **discrete-time reactive systems**. The FDI is **compiled** to run on-board, performs **passive diagnosis** and outputs **Boolean alarms**.

Model-based techniques for FDI design for **discrete-time reactive systems**. The FDI is **compiled** to run on-board, performs **passive diagnosis** and outputs **Boolean alarms**.

Model-based:

- as opposed to Data-Driven, and Rule-Based
- Early-phase analysis
- Re-use model from functional analysis and recovery planning

Model-based techniques for FDI design for **discrete-time reactive systems**. The FDI is **compiled** to run on-board, performs **passive diagnosis** and outputs **Boolean alarms**.

Discrete-Time Reactive System:

- as opposed to continuous time, and combinational system
- Focus on high-level components interaction
- Reasonable complexity trade-off:
 - Combinational \Rightarrow too limited
 - Continuous time \Rightarrow too expressive

Model-based techniques for FDI design for **discrete-time reactive systems**. The FDI is **compiled** to run on-board, performs **passive diagnosis** and outputs **Boolean alarms**.

Compiled:

- as opposed to on-the-fly
- Easier to verify and certify
- Autonomous system with limited on-board capabilities
- **Consistency** in behavior (functional and timed)

Model-based techniques for FDI design for **discrete-time reactive systems**. The FDI is **compiled** to run on-board, performs **passive diagnosis** and outputs **Boolean alarms**.

Passive diagnosis

- as opposed to active diagnosis
- Safer to integrate with the system
- Potentially more limited

Model-based techniques for FDI design for **discrete-time reactive systems**. The FDI is **compiled** to run on-board, performs **passive diagnosis** and outputs **Boolean alarms**.

Boolean alarms:

- as opposed to quantitative information (e.g., probabilities), and explanations (e.g., diagnosis)
- Target decision making \Rightarrow FR
- Simplify certification

Formal Model-Based Design of FDI

- How does the system work?
- What are the faults?
- What sensors are available?
- \Rightarrow Infinite/Finite State Discrete-Time Systems: SMV, SLIM

- What conditions to monitor?
- What alarms should the FDI provide?
- What are acceptable delays?
- Recall finite (bounded) or infinite (perfect) observations?
- Composition with the plant (Synchronous vs Asynchronous)
- Environment/Operational assumptions (Context)

Bad configuration of the system:

Both engines are off

Bad configuration of the system:

Both engines are off

Fault has occurred:

The fuel valve is stuck-closed

Bad configuration of the system:

Both engines are off

Fault has occurred:

The fuel valve is stuck-closed

Conditions on the evolution of the system:

The fuel valve has been stuck-closed for at least 3 time-units and the engines are currently on

Delay between the diagnosis condition (β) and the alarm (A)

Whenever the fuel valve gets stuck-closed (β), the FDI should raise the alarm (A) within 4 time-units (BoundDel)

Also define EXACTDEL, FINITEDEL

Maximality

Maximality

The alarm should go up as soon and for as long as possible

 \Rightarrow Deterministic FDI \Rightarrow Equivalence Checking

Alarm Specification Language $(ASL_{\mathcal{K}})$

Pattern-based language to capture requirements:

- Name of the Alarm
- Diagnosis Condition
- Delay information
- Maximality
- (Diagnosability)

 $BOUNDDEL(A_{EnginesOff}, Engine_a = off \land Engine_b = off, 5, Max = True)$

TFPG Analysis

What is an acceptable Delay?

- Alarm should fire early enough to prevent the propagation of the failure
- \Rightarrow Timed Failure Propagation Graphs

TFPG Analysis

What is an acceptable Delay?

- Alarm should fire early enough to prevent the propagation of the failure
- \Rightarrow Timed Failure Propagation Graphs

Model-Based Diagnosis: only as good as the model

The TFPG must be validated!

Encode all executions of the TFPG into a Satisfiability Modulo Theory (SMT) formula

Automated Reasoning:

- Which executions are (not) possible?
- Diagnosability, Diagnosis, Activability
- Refinement

TFPG Validation

Encode all executions of the TFPG into a Satisfiability Modulo Theory (SMT) formula

Automated Reasoning:

- Which executions are (not) possible?
- Diagnosability, Diagnosis, Activability
- Refinement

every trace of Right can be mapped to a trace of Left

TFPG Validation

Prototype: MathSAT, Z3, pySMT

Requirements Specification

Easily handle >2000 nodes (5x industrial size)

- Over-constrained or Under-constrained
- Subsumption

- Over-constrained or Under-constrained
- Subsumption
- Is it **possible** to build a diagnoser for the System?

Observations might not be sufficient to disambiguate good and bad executions: Critical Pair

- ▶ No critical pair ⇒ System diagnosable [Sampath95]
- What if only 1 critical pair? Too coarse!
- ⇒ Trace Diagnosability: Diagnose as much as possible

1. Trace Diagnosability: Diagnose as much as possible

- 3-valued alarms:
 - Fault did not occur
 - Fault occurred
 - Uncertainty
- 2. Encode System and Trace Diagnosability as properties in Temporal Epistemic Logic
- 3. System Diagnosability Testing via Twin-Plant for ASL_K

Requirements Validation

1. Trace Diagnosability: Diagnose as much as possible

- 3-valued alarms:
 - Fault did not occur
 - Fault occurred
 - Uncertainty
- 2. Encode System and Trace Diagnosability as properties in Temporal Epistemic Logic
- 3. System Diagnosability Testing via Twin-Plant for ASL_K
- 4. Optimization Problem ⇒ Pareto Optimal Sensor Placement

Preserves diagnosability while reducing the sensors set to optimize a multi-cost function

Advantages:

- Correct by construction
- Proof of realizability
- Quick prototype

Challenges:

- Computationally hard (sometimes undecidable)
- Not human readable

		Transition System Type				
		Finite Infinite				
all	Bounded					
Recall	Perfect	Sampath, Schumann	Timed, Stochastic			

Limitations:

- Extend to ASL_K
- Avoid run-time computation

		Transition System Type				
		Finite Infinite				
all	Bounded	Parameter Synthesis	Parameter Synthesis			
Recal	Perfect	Sampath, Schumann	Timed, Stochastic			

Limitations:

- Extend to ASL_K
- Avoid run-time computation

		Transition System Type				
		Finite Infinite				
all	Bounded	Parameter Synthesis	Parameter Synthesis			
Recal	Perfect	Sampath, Schumann <mark>Belief Explorer</mark>	Timed, Stochastic ~ (TFPG Abstraction)			

Limitations:

- Extend to ASL_K
- Avoid run-time computation

	State	s	OI	bservatio	ns
t ₀	t_1	t2	t ₀	t_1	t_2
AO	B1	A1	$(\overline{x},\overline{y})$	(x, y)	(\overline{x}, y)
A1	B2	C1	(\overline{x}, y)	(x,\overline{y})	(\overline{x}, y)
A2	CO	AO	$(\overline{x},\overline{y})$	$(\overline{x},\overline{y})$	$(\overline{x},\overline{y})$
A2	CO	B2	$(\overline{x},\overline{y})$	$(\overline{x},\overline{y})$	(x,\overline{y})
BO	A2	CO	(x,\overline{y})	$(\overline{x},\overline{y})$	$(\overline{x},\overline{y})$
B1	A1	B2	(x, y)	(\overline{x}, y)	(x,\overline{y})
B2	C1	BO	(x,\overline{y})	(\overline{x}, y)	(x,\overline{y})
CO	AO	B1	$(\overline{x},\overline{y})$	$(\overline{x},\overline{y})$	(x, y)
CO	B2	C1	$(\overline{x},\overline{y})$	(x,\overline{y})	(\overline{x}, y)
C1	B0	A2	(\overline{x}, y)	(x,\overline{y})	$(\overline{x},\overline{y})$

Recall = 3

States			0	bservatio	ons
t ₀	t_1	t ₂	t ₀	t_1	t_2
AO	B1	A1			
A1	B2	C1	(\overline{x}, y)		
A2	CO	AO			
A2	CO	B2			
BO	A2	CO			
B1	A1	B2			
B2	C1	BO			
CO	AO	B1			
CO	B2	C1			
C1	B0	A2	(\overline{x}, y)		

Recall = 3

 (\overline{x}, y)

9	State	s	Oł	oservatio	ons
t ₀	t_1	t ₂	t ₀	t_1	t_2
AO	B1	A1			
A1	B2	C1	(\overline{x}, y)	(x,\overline{y})	
A2	CO	AO			
A2	CO	B2			
BO	A2	CO			
B1	A1	B2			
B2	C1	BO			
CO	AO	B1			
CO	B2	C1			
C1	B0	A2	(\overline{x}, y)	(x,\overline{y})	

Recall = 3

 $(\overline{x}, y)(x, \overline{y})$

9	State	s	OI	oservatio	ons
t ₀	t_1	t ₂	t ₀	t_1	t ₂
AO	B1	A1			
A1	B2	C1	(\overline{x}, y)	(x,\overline{y})	(\overline{x}, y)
A2	CO	AO			
A2	CO	B2			
BO	A2	CO			
B1	A1	B2			
B2	C1	BO			
CO	AO	B1			
CO	B2	C1			
C1	B0	A2	(\overline{x}, y)	(x,\overline{y})	

Recall = 3

 $(\overline{x}, y)(x, \overline{y})(\overline{x}, y)$

	State	s	OI	bservatio	ons
t ₀	t_1	t2	t ₀	t_1	t_2
AO	B1	A1			
A1	B2	C1	(\overline{x}, y)	(x,\overline{y})	(\overline{x}, y)
A2	CO	AO			
A2	CO	B2			
BO	A2	CO			
B1	A1	B2			
B2	C1	BO			
CO	AO	B1			
CO	B2	C1			
C1	B0	A2	(\overline{x}, y)	(x,\overline{y})	(x,y)

Recall = 3

 $(\overline{x}, y)(x, \overline{y})(\overline{x}, y)$

- ► Formal Model + Formal Requirements ⇒ Model-Checking
- Requirements translated into KL₁
- \Rightarrow Develop effective model-checking algorithms for KL_1 over infinite state transition systems

► LTL + K_A Operator:

$G(K_ASunny)$

It is always the case that Agent A knows that it is Sunny

- ► K_A Operator: two points in a trace cannot be distinguished if they have the same observations (up to recall) for A
- KL_1 : Disallow nesting of K (i.e., $K_A K_B \varphi$)

► 3 cards: 2 Red, 1 Green

• (Alice = Red
$$\land$$
 Bob = Red) \rightarrow K_{Alice}(Bob = Red)?

Bob Eve

Alice

- ► 3 cards: 2 Red, 1 Green
- (Alice = Red \land Bob = Red) \rightarrow K_{Alice}(Bob = Red)?

- ▶ 3 cards: 2 Red, 1 Green
- (Alice = Red \land Bob = Red) \rightarrow K_{Alice}(Bob = Red)? No!

- ▶ 3 cards: 2 Red, 1 Green
- (Alice = Red \land Bob = Red) \rightarrow K_{Alice}(Bob = Red)? No!
- (Alice = Green) $\rightarrow K_{Alice}(Bob = Red)$?

- ► 3 cards: 2 Red, 1 Green
- (Alice = Red \land Bob = Red) \rightarrow K_{Alice}(Bob = Red)? No!
- $(Alice = Green) \rightarrow K_{Alice}(Bob = Red)$? Yes!

$\mathsf{ASL}_{\mathcal{K}} \Rightarrow \mathit{KL}_1$

$$BOUNDDEL_{\mathcal{K}}(A_{EnginesOff}, Engine_{a} = off \land Engine_{b} = off, 5$$

$$Max = True, System)$$
 \Downarrow

$$G(A_{EngineOff}
ightarrow O^{\leq 5}(Engine_a = off \land Engine_b = off)) \land$$

 $G(Engine_a = off \land Engine_b = off
ightarrow F^{\leq 5}A_{EngineOff}) \land$

$$G(KO^{\leq 5}(Engine_a = off \land Engine_b = off) \rightarrow A_{EngineOff})$$

Unified Encoding \Rightarrow recall and synchronicity embedded in K_A

A	$SL_K \Rightarrow$	KL ₁	Verification + FDI =
	Template	Maximality = False	Maximality = True
System	ExactDel	$G(A \to Y^n \beta) \land G(\beta \to X^n A)$	$ \begin{array}{c} G(A \to Y^n \beta) \land G(\beta \to X^n A) \\ G(KY^n \beta \to A) \end{array} \land $
diag = 5	BoundDel	$G(A \to O^{\leq n}\beta) \land G(\beta \to F^{\leq n}A)$	$ \begin{array}{c} G(A \to O^{\leq n}\beta) \land G(\beta \to F^{\leq n}A) \\ G(KO^{\leq n}\beta \to A) \end{array} \land $
	FiniteDel	$G(A \to O\beta) \land G(\beta \to FA)$	$ \begin{array}{c} G(A \to O\beta) \land \overline{G(\beta \to FA)} \land \\ G(KO\beta \to A) \end{array} $
= Trace	ExactDel	$ \begin{array}{c} G(A \to Y^n \beta) \land \\ \hline G((\beta \to X^n K Y^n \beta) \to (\beta \to X^n A)) \end{array} $	$ \begin{array}{c} G(A \to Y^n \beta) \land \\ \hline G((\beta \to X^n K Y^n \beta) \to (\beta \to X^n A)) \\ \hline G(K Y^n \beta \to A) \end{array} \land $
diag	BoundDel	$ \begin{array}{c} G(A \to O^{\leq n}\beta) \land \\ \hline G((\beta \to F^{\leq n}KO^{\leq n}\beta) \to (\beta \to F^{\leq n}A)) \end{array} $	$ \begin{array}{c} G(A \to O^{\leq n}\beta) \land \\ G((\beta \to F^{\leq n}KO^{\leq n}\beta) \to (\beta \to F^{\leq n}A)) \land \\ G(KO^{\leq n}\beta \to A) \end{array} $
	FiniteDel	$ \begin{array}{c} G(A \to O\beta) \land \\ G((\beta \to FKO\beta) \to (\beta \to FA)) \end{array} $	$ \begin{array}{ccc} G(A \to O\beta) \land \\ G((\beta \to FKO\beta) \to (\beta \to FA)) \\ G(KO\beta \to A) \end{array} $

Correctness Completeness Diagnosability Maximality

Model-Checking KL₁

		Transition System Type				
		Finite Infinite				
Recall	Bounded	MCMAS, MCK				
	Perfect	МСК				

Model-Checking KL₁

		Transition System Type			
		Finite Infinite			
Recall	Bounded	MCMAS, MCK, Lazy	Lazy		
	Perfect	МСК			

Lazy KL1 Model-Checking

- **Bounded Recall**: Semantics depends only on the state
- Reduce to LTL + Set states satisfying $K\beta$

Lazy KL1 Model-Checking

- **Bounded Recall**: Semantics depends only on the state
- Reduce to LTL + Set states satisfying $K\beta$

 $M \models G(K\beta)$? Cex: A,B

Lazy KL1 Model-Checking

- **Bounded Recall**: Semantics depends only on the state
- Reduce to LTL + Set states satisfying $K\beta$
- Lazy: On-demand computation of states in $K\beta$

$$M \models G(K\beta)$$
 ? Cex: A

Optimizations: Static Learning, Generalization, Dual-Rail Encoding, *InvKL*₁
Lazy KL1 Model-Checking

- **Bounded Recall**: Semantics depends only on the state
- Reduce to LTL + Set states satisfying $K\beta$
- Lazy: On-demand computation of states in $K\beta$

$$M \models G(K\beta)$$
 ? Cex: A

Optimizations: Static Learning, Generalization, Dual-Rail Encoding, *InvKL*₁

Lazy KL1 Model-Checking

- **Bounded Recall**: Semantics depends only on the state
- Reduce to LTL + Set states satisfying $K\beta$
- Lazy: On-demand computation of states in $K\beta$

$$M \models G(K\beta)$$
 ? Cex: A,B

Optimizations: Static Learning, Generalization, Dual-Rail Encoding, *InvKL*₁

Lazy KL1 Model-Checking

- **Bounded Recall**: Semantics depends only on the state
- Reduce to LTL + Set states satisfying $K\beta$
- Lazy: On-demand computation of states in $K\beta$

$$M \models G(K\beta)$$
 ? Cex: A,B

Optimizations: Static Learning, Generalization, Dual-Rail Encoding, *InvKL*₁

- Improvement w.r.t. existing tools: MCMAS MCK
- Change in core technology (BDD vs SAT)

Formal Model-Based Design of FDI

AUTOGEF and FAME

AUTOGEF

- Automated Generation of FDIR
- Specification & Synthesis
- Finite Discrete Time

FAME

- FDIR Development Methodology and V&V
- Process & Timed Propagation
- Infinite Continuous Time

Include Fault Recovery and coordination

Evaluation

Exomars TGO case-study:

- Non-experts in formal verification
- 6-10 Alarms \Rightarrow 700-2413 States
- Positive Evaluation:

Reach a **better understanding** of System and FDIR designs

Conclusions

- 1. Formal FDI design:
 - ▶ **Unified specification** (ASL_K) that accounts for multiple issues such as synchronicity, recall, delays etc.
 - Synthesis of FDI components
 - Diagnosability testing for ASL_K, Algorithm for Pareto Optimal Sensor Placement
- 2. Validation of **Timed Failure Propagation Graphs** based on Satisfiability Modulo Theory
- 3. Model-checking KL_1 over infinite/finite state systems
- 4. ESA projects AUTOGEF and FAME

FDI Design and Temporal Epistemic Logic

Future Work

- Case-studies: End-to-end evaluation within industrial setting
- Distributed FDI: Architectural and Contract-Based Design
- Model-Checking: KL_n and improve performances

Thank You! Questions?

A Formal Foundation of FDI Design via Temporal Epistemic Logic

- FDI Specification and & ASL_K
- FDI Verification, Validation and Synthesis
- KL1 Model-Checking
- TFPG Validation, Pareto Optimal Sensor Placement
- AUTOGEF, FAME

 ASL_K

Pareto

 KL_1

Synthesis

Industrial

Timed Failure Propagation Graphs

Conclusion

Summary View

Recall	Task	Plant	Logic / Problem	Tool / Algorithm
BR	Diagnosability, Verification	Infinite	KL ₁	Lazy
	Synthesis	Infinite	Parameter Synthesis	NUXMV
PR	Diagnosability,	Finite	KL ₁	MCK
	Verification	Infinite	LTL	NUXMV
		Infinite	KL1	OPEN
	Synthesis	Finite	Belief Explorer	XSAP
		Infinite	OPEN	OPEN/Abstraction

Safety condition defining a (set of) configurations of the system.

Safety condition defining a (set of) configurations of the system.

Bad configuration of the system:

Both engines are off

Safety condition defining a (set of) configurations of the system.

Bad configuration of the system:

Both engines are off

Fault has occurred:

The fuel valve is stuck-closed

Safety condition defining a (set of) configurations of the system.

Bad configuration of the system:

Both engines are off

Fault has occurred:

The fuel valve is stuck-closed

Conditions on the evolution of the system:

The fuel valve has been stuck-closed for at least 3 time-units and the engines are currently on

Alarm Condition (Delays)

Delay between the diagnosis condition β and the alarm ${\it A}$

Whenever the fuel valve gets stuck-closed, the FDI should raise the alarm within 4 time-units (BoundDel)

Maximality

The alarm should go up as soon and for as long as possible BOUNDDEL(A, β, 4)

Maximality removes ambiguity

Diagnosability

Always possible to satisfy an Alarm Condition?

Diagnosability

Always possible to satisfy an Alarm Condition?

No! Observations might not be sufficient to disambiguate: Critical Pair

Diagnosability

- No critical pair = System diagnosable [Sampath]
- ► Too coarse-grained? E.g., 1 critical pair?
- \Rightarrow Trace Diagnosability: Diagnose as much as possible

Example of an ASL requirement

- Detect when both engines are off.
- Delay of at most 5 time-units.
- Require <u>maximality</u> and <u>system diagnosability</u>

Example of an ASL requirement

- Detect when both engines are off.
- Delay of at most 5 time-units.
- Require <u>maximality</u> and <u>system diagnosability</u>

 $BOUNDDEL(A_{EnginesOff}, Engine_a = off \land Engine_b = off, 5$

Max = *True*, *System*)

Linear Temporal Logic

Describes properties of a single trace.

From ASL to Logic

Linear Temporal Logic

- Describes properties of a single trace.
- Cannot encode Diagnosability (neither Maximality)

Linear Temporal Logic

- Describes properties of a single trace.
- Cannot encode Diagnosability (neither Maximality)

What could an ideal diagnoser know with the available sensors?

Reasoning about Knowledge: Epistemic Logic

From ASL to Logic

ASL	maximality = False	maximality = True
diag = System	Single Trace (LTL)	
diag = Trace		

From ASL to Logic

ASL	maximality = False	maximality = True
diag = System	Single Trace (LTL)	Set of Traces (LTL+K)
diag = Trace	Set of Traces (LTL+K)	Set of Traces (LTL+K)

LTL+K: LTL + Epistemic operator K

Alarm Specification Language (ASL)

- Alarm Variable A
- Diagnosis Condition β (Past-only LTL)
- Delay n (Bounded LTL operators)
- \Rightarrow Formalization of:

Correctness : Alarm occurrence implies occurrence of the fault in the past.

Completeness : Fault occurrence implies Alarm occurrence in the future.

BoundDel(
$$A, \beta, n$$
): $G(A \to O^{\leq n}\beta) \land G(\beta \to F^{\leq n}A)$

Temporal Epistemic Logic

 $K\phi$ holds at time *n* in a trace σ_1 iff ϕ holds at time *n* in all traces that are observational equivalent to σ_1 .

$$\sigma_1, n \models K\phi \text{ iff } \forall \sigma_2. \ obs(\sigma_1^n) = obs(\sigma_2^n) \Rightarrow \sigma_2, n \models \phi.$$

Diagnosability as Epistemic Property

Could the ideal diagnoser detect the diagnosis condition?

Diagnosability : Whenever the diagnosis condition β occurs the ideal diagnoser will (eventually) know that it occurred.

BOUNDDEL(A, β, n) : $G(\beta \to F^{\leq n} KO^{\leq n}\beta)$ Epistemic Encoding provides a unified way of dealing with the problem.

Maximality as Epistemic Property

The alarm should go up as soon and for as long as possible

Maximality : As long as the <u>ideal</u> diagnoser can be certain about the occurrence of β the alarm \overline{A} will be active.

BoundDel(A, β, n): $G(KO^{\leq n}\beta \rightarrow A)$

ASL_{K} (Overview)

	Template	maximality = False	maximality = True		
diag = System	ExactDel	$G(A \to Y^n \beta) \land G(\beta \to X^n A)$	$G(A \to Y^n \beta) \land G(\beta \to X^n A) \land$		
			$G(KY^n\beta \to A)$		
	BoundDel	$G(A \to O^{\leq n}\beta) \land G(\beta \to F^{\leq n}A)$	$G(A \to O^{\leq n}\beta) \land G(\beta \to F^{\leq n}A) \land$		
			$G(\mathit{KO}^{\leq n}eta ightarrow A)$		
	FiniteDel	$G(A \to O\beta) \land G(\beta \to FA)$	$G(A \to O\beta) \land G(\beta \to FA) \land$		
			${\cal G}({\cal K}{\cal O}eta ightarrow {\cal A})$		
diag = Trace	ExactDel	$G(A \rightarrow Y^n \beta) \wedge$	$G(A \rightarrow Y^n \beta) \wedge$		
	1	$G((\beta \to X^n K Y^n \beta) \to (\beta \to X^n A))$	$G((\beta \to X^n K Y^n \beta) \to (\beta \to X^n A)) \land$		
			$G(KY^neta o A)$		
	BoundDel	$G(A o O^{\leq n} \beta) \land$	$G(A o O^{\leq n} eta) \land$		
		$G((\beta \to F^{\leq n} KO^{\leq n}\beta) \to (\beta \to F^{\leq n}A))$	$G((\beta \to F^{\leq n} KO^{\leq n}\beta) \to (\beta \to F^{\leq n}A)) \land$		
			$G(\mathcal{K}O^{\leq n}eta ightarrow \mathcal{A})$		
	FiniteDel	$G(A \rightarrow O\beta)$ \wedge	$G(A \rightarrow O\beta) \wedge$		
		$G((\beta \rightarrow FKO\beta) \rightarrow (\beta \rightarrow FA))$	$G((\beta \rightarrow FKO\beta) \rightarrow (\beta \rightarrow FA)) \land$		
			G(KOeta ightarrow A)		

Correctness Completeness Diagnosability Maximality

Example

$\operatorname{BOUNDDEL}_{\mathcal{K}}(A_{\operatorname{EnginesOff}}, \operatorname{Engine}_{a} = off \land \operatorname{Engine}_{b} = off, 5$

∜

$$G(A_{EngineOff} \rightarrow O^{\leq 5}(Engine_a = off \land Engine_b = off)) \land$$

 $G(Engine_a = off \land Engine_b = off \rightarrow F^{\leq 5}A_{EngineOff}) \land$

$$G(KO^{\leq 5}(Engine_a = off \land Engine_b = off) \rightarrow A_{EngineOff})$$

Related

- Jiang and Kumar[3]: Specification as LTL
- Ezekiel et al. [1] Huang [2]: Diagnosability as epistemic

Our framework goes in the same directions: unifying view of other aspects of the design process (e.g., validation and synthesis), and considering key problems such as delays, maximality and trace-diagnosability.

Synthesis procedure similar to Schumann's[5], but we capture more expressive diagnosis conditions, and introduce delays.

Theorem

Let α be a propositional formula, α is d-delay diagnosable (ala Sampath) in P iff BOUNDDEL(A, $O\alpha$, d) is diagnosable in P.

Can we **minimize** the number of sensors, while preserving diagnosability? **Sensor Placement**

Subset of sensors that preserves diagnosability

Sensors have a cost (energy, weight, monetary)
 E.g., Trade-off between cost and delay

⇒ Pareto Optimality

>170 bits and 40 obs.

Property-Monotonicity and Cost-Monotonicity

Experiments: solved instances

			one-cost	
Family	#Instances	valuations-first	slicing	costs-first
c432	32	11	13	32
cassini	21	6	12	21
elevator	4	4	4	4
orbiter	4	4	4	4
roversmall	4	4	4	4
roverbig	4	4	4	4
×34	4	4	4	4
product lines	8	6	4	8
TOTAL	81	43	49	81

Experiments: Impact of Reduce in costs-first

Background

- ► Transition system S = (X, X₀, I, T), set of states X, initial states X₀, inputs I and the transition relation T ⊆ X × I × X
- Trace $\sigma \doteq x_0, i_1, x_1, \cdots, x_0 \in X_0$, $\forall j.(x_j, i_{j+1}, x_{j+1}) \in T$
- Observation $obs(x_j) \doteq o_j \in O$ (similarly for i_j)
- Observable Trace $obs(\sigma) \doteq obs(x_0), obs(i_1), obs(x_1), \ldots$
- State x defines unobservable condition of the system: The fuel valve is closed
- Observation obs(x) defines an observable situation:
 No fuel is coming out of the pipe

- Bounded Recall: Semantics depends only on the state
- Reduce to LTL + Set states satisfying $K\beta$

- Bounded Recall: Semantics depends only on the state
- Reduce to LTL + Set states satisfying $K\beta$

$$M \models G(K\beta)$$
 ? Cex: A,B

- Bounded Recall: Semantics depends only on the state
- Reduce to LTL + Set states satisfying $K\beta$
- Lazy: On-demand computation of states in $K\beta$

$$M \models G(K\beta)$$
 ? Cex: A,B

- Bounded Recall: Semantics depends only on the state
- Reduce to LTL + Set states satisfying $K\beta$
- Lazy: On-demand computation of states in $K\beta$

$$M \models G(K\beta)$$
 ? Cex: A,B

- Bounded Recall: Semantics depends only on the state
- Reduce to LTL + Set states satisfying $K\beta$
- Lazy: On-demand computation of states in $K\beta$

$$M \models G(K\beta)$$
 ? Cex: A,B

Experimental Results

Verification + FDD =

Optimizations are crucial:

- Static Learning,
- Generalization,
- Dual-Rail Encoding,
- InvKL₁

Recall	#Obs	Lazy Basic	Lazy Best
0	11	3.28	1.46
5	66	3536.17	52.72
10	121	то	103.47
20	231	то	288.31
40	451	то	981.11

#DC	MCMAS	Lazy
40	3.66	1.83
80	26.57	8.54
120	169.43	25.9
160	322.45	55.2
200	528.42	104.02
240	1582.68	174.86
280	ТО	287.06

Lazy algorithm

1: function VERIFY (M, φ) ϕ_o , placeholders := BOOL_ABSTRACTION(φ) 2: $M_{\rho} := \text{EXTEND}(M, \text{placeholders})$ 3: 4: loop 5: $\operatorname{cex} := M_o \models \phi_o$ if not cex then 6: 7: return "Satisfied" 8: end if if IS_SPURIOUS(*M*, cex, placeholders) then 9: $\phi_{\rho} := \text{LEARN_LEMMA}(M, \text{ cex, placeholders, } \phi_{\rho})$ 10: 11: else 12: return cex end if 13: 14 end loop 15: end function

Lazy algorithm

```
1: function IS_SPURIOUS(M, cex, placeholders)
 2:
         for state \in cex do
 3:
              for \rho_{K_A\beta} \in \text{placeholders } \mathbf{do}
 4:
                   p_value := \rho_{K_A\beta}(state)
                   if not ((state \in \llbracket K_A \beta \rrbracket) \leftrightarrow p_value) then
 5:
                       return True // Spurious!
 6:
                   end if
 7:
              end for
 8:
         end for
 9:
10:
         return False
11: end function
```

Background

LTL with Past:

► X in the next state, Y in the previous state.

$$\blacktriangleright X^{n}\varphi \doteq XX^{n-1}\varphi \ (X^{0}\varphi = \varphi)$$

► F Finally, O Once.

$$\blacktriangleright F^{\leq n} \varphi \doteq \varphi \lor X \varphi \lor \cdots \lor X^n \varphi$$

• Similar definitions for Y^n , $O^{\leq n}$

$$\sigma_1, n \models K\phi \text{ iff } \forall \sigma_2. \ obs(\sigma_1^n) = obs(\sigma_2^n) \Rightarrow \ \sigma_2, n \models \phi.$$

Temporal Epistemic Logic

► LTL + K

 $K\phi$ holds at time *n* in a trace σ_1 iff ϕ holds at time *n* in all traces that are observational equivalent to σ_1 .

$$\sigma_1, n \models K\phi \text{ iff } \forall \sigma_2. \ obs(\sigma_1^n) = obs(\sigma_2^n) \Rightarrow \ \sigma_2, n \models \phi.$$

 $K\phi$ as ideal diagnoser "Knows" that ϕ

Synthesis

Given a System and a Specification, we build a diagnoser that is:

- Correct,
- Trace Complete,
- Maximal

Synthesis as Param Synthesis

States		Observations			
t ₀	t_1	t ₂	t_0	t_1	<i>t</i> ₂
AO	B1	A1	$(\overline{x},\overline{y})$	(x, y)	(\overline{x}, y)
A1	B2	C1	(\overline{x}, y)	(x,\overline{y})	(\overline{x}, y)
A2	CO	AO	$(\overline{x},\overline{y})$	$(\overline{x},\overline{y})$	$(\overline{x},\overline{y})$
A2	CO	B2	$(\overline{x},\overline{y})$	$(\overline{x},\overline{y})$	(x,\overline{y})
BO	A2	CO	(x,\overline{y})	$(\overline{x},\overline{y})$	$(\overline{x},\overline{y})$
B1	A1	B2	(x, y)	(\overline{x}, y)	(x,\overline{y})
B2	C1	BO	(x,\overline{y})	(\overline{x}, y)	(x,\overline{y})
CO	AO	B1	$(\overline{x},\overline{y})$	$(\overline{x},\overline{y})$	(x, y)
CO	B2	C1	$(\overline{x},\overline{y})$	(x,\overline{y})	(\overline{x}, y)
C1	B0	A2	(\overline{x}, y)	(x,\overline{y})	$(\overline{x},\overline{y})$

Figure: Traces and Observations for Recall 2

Figure: BR MB Free

Figure: BR MB InitX

Figure: PR MB Free

Figure: PR MB InitX

Figure: BS vs PR (Blue: InitX – Red: Free)

Figure: BR MB Free (obs 30%)

- AUTOGEF (Automated Generation of FDIR)
- FAME (FDIR Development Methodology and V&V)

Process and Tools for:

- Definition FDIR Requirements
- Performing Validation, Verification and Synthesis

Tools built on existing ESA COMPASS technology.

Evaluation

Exomars TGO case-study:

- Usage by non-experts in formal verification
- Synthesis of FDI with 750 states in seconds
- Automated synthesis enables faster design iterations
- Positive feedback by ESA and industrial partners

Table: Process break-down

Phase	Steps	COMPASS
Analyze User Require-	System Modeling & Fault Extension	Formal system modeling – nominal and
ments		faulty behavior (in SLIM); automatic model extension
	Formal Analyses	Derive requirements on FDIR design
	Mission Modeling	Definition of mission, phases, and spacecraft
		configurations
Perform Timed Failure	Formal Analyses	Derive information on causality and fault
Propagation Analysis		propagation (input for TFPG modeling)
	TFPG Modeling/Synthesis	TFPG modeling, editing, synthesis
	TFPG Analyses	TFPG behavioral validation, TFPG effec-
		tiveness validation
Define FDIR Objectives	FDIR Requirements Specification	Modeling of FDIR objectives and strategies,
and Strategies		definition of pre-existing components to be
		re-used, and FDIR hierarchy
Design the FDIR	FDIR Modeling/Synthesis	Formal modeling and automatic synthesis of
		FDIR
	Formal Analyses	FDIR effectiveness verification

Failure Propagation

Failures can propagate through-out the system:

```
Many off-nominal behaviors \Rightarrow Masking of faults
```

Failure Propagation

Failures can propagate through-out the system:

Many off-nominal behaviors \Rightarrow Masking of faults

Failure Propagation

Failures can propagate through-out the system:

Many off-nominal behaviors \Rightarrow Masking of faults

Generator broken? Generator AND Sensor broken?

TFPG Analysis

What is an acceptable Delay?

- Alarm should fire early enough to prevent the propagation of the failure
- \Rightarrow Timed Failure Propagation Graphs

TFPG Analysis

What is an acceptable Delay?

- Alarm should fire early enough to prevent the propagation of the failure
- \Rightarrow Timed Failure Propagation Graphs

TFPG Analysis

What is an acceptable Delay?

- Alarm should fire early enough to prevent the propagation of the failure
- \Rightarrow Timed Failure Propagation Graphs

Goal: Model propagation of failures to perform better reasoning

TFPG Validation

Encode all executions of the TFPG into a **Satisfiability Modulo Theory** (SMT) formula

TFPG Validation

Encode all executions of the TFPG into a **Satisfiability Modulo Theory** (SMT) formula

- Each node only depends on its predecessors
- Separation of Boolean and Temporal part
- Need to capture only 2 semantics: OR and AND nodes

TFPG Validation

Encode all executions of the TFPG into a **Satisfiability Modulo Theory** (SMT) formula

- Each node only depends on its predecessors
- Separation of Boolean and Temporal part
- Need to capture only 2 semantics: OR and AND nodes

$$\varphi(\vec{u}, m) = \bigwedge_{v \in D.} B_{or}(v, m) \land T_{or}(v, m) \land$$
$$\bigwedge_{v \in D.} DC(v) = \text{OR}$$
$$\bigwedge_{v \in D.} DC(v) = \text{AND}$$

where \vec{u} vector of activation states and times, m mode of the system, D set of discrepancies.

Captures the causal and temporal relation of off-nominal conditions

Failure modes describe the basic faults

Discrepancies describe off-nominal conditions

Propagations are indicated with edges:

Propagations are indicated with edges: Time-bounds and Modes

Monitors observe a discrepancy.

Semantics

- Active discrepancy: the failure effects reached that node (permanent effect);
- ► Active Edge: the starting node is active, and the current mode is compatible with the edge mode (m ∈ EM(e));
- ► The activation time t' of an OR node must satisfy e.tmin ≤ t' - t ≤ e.tmax, where t is the activation time of its predecessor;
- The activation time t' of an AND node is the composition of the activation periods for each incoming edge; the tmax can be violated by all but one of the predecessors;
- Memoryless Edges: if deactivated (due to mode change) the propagation stops and resets.

Problem

Are all (important) executions of the system captured by the TFPG? Are the models of the system and TFPG aligned?

Model-Based Diagnosis: only as good as the model

Problem

Are all (important) executions of the system captured by the TFPG? Are the models of the system and TFPG aligned?

Model-Based Diagnosis: only as good as the model

The TFPG must be validated!

Related Work

- Introduced by Vanderbilt University in 2003 (Abdelwahed, Karsai, and Biswas)
- Used both in hardware, system and software monitoring, diagnosis, prognosis
- Studied in aerospace setting: Boeing, NASA, ESA

Related Work

- Introduced by Vanderbilt University in 2003 (Abdelwahed, Karsai, and Biswas)
- Used both in hardware, system and software monitoring, diagnosis, prognosis
- Studied in aerospace setting: Boeing, NASA, ESA
- Validation: Alarm-Sequence Maturation: Data-driven correction of the TFPG
- \Rightarrow Data-driven = The system must already be operational!

How do you validate a TFPG?

- Necessity, Possibility
- Refinement
- Diagnosability

- Necessity, Possibility : Do all (resp. some) executions of the TFPG satisfy a given condition?
- Refinement
- Diagnosability

- Necessity, Possibility : Do all (resp. some) executions of the TFPG satisfy a given condition?
- Refinement : Given two TFPG, can every execution of one TFPG be mapped on the other?
- Diagnosability

- Necessity, Possibility : Do all (resp. some) executions of the TFPG satisfy a given condition?
- Refinement : Given two TFPG, can every execution of one TFPG be mapped on the other?
- Diagnosability : Given a diagnosis condition, is it possible to detect the occurrence of the condition given the available monitors?

- Necessity, Possibility : Do all (resp. some) executions of the TFPG satisfy a given condition?
- Refinement : Given two TFPG, can every execution of one TFPG be mapped on the other?
- Diagnosability : Given a diagnosis condition, is it possible to detect the occurrence of the condition given the available monitors?

Frozen Mode Assumption: Mode does not change

TFPG as the set of traces satisfying the definition.

X State	X Time	Y State	Y Time
Off	-	Off	-
On	0	On	1
On	1	On	2
			•••

TFPG as the set of traces satisfying the definition.

X State	X Time	Y State	Y Time
Off	-	Off	-
On	0	On	1
On	1	On	2
•••	•••	•••	•••

Infinite Table

TFPG as the set of traces satisfying the definition.

X State	X Time	Y State	Y Time
Off	-	Off	-
On	0	On	1
On	1	On	2
•••	•••	•••	•••

Infinite Table

X State = On, X Time = 0, Y State = Off is not in the table

TFPG as the set of traces satisfying the definition.

X State	X Time	Y State	Y Time
Off	-	Off	-
On	0	On	1
On	1	On	2
•••	•••	•••	•••

Infinite Table

▶ X State = On, X Time = 0, Y State = Off is **not** in the table

Goal: Symbolic representation of this Infinite Table.
Boolean Logic and SAT

Boolean logic represents similar tables:

р	q	$p \land q$
F	F	F
F	Т	F
Т	F	F
Т	Т	Т

Boolean Logic and SAT

Boolean logic represents similar tables:

р	q	$p \land q$
Т	Т	Т

 $p \wedge q$ represents only the rows in which it is **T**rue.

Boolean Logic and SAT

Boolean logic represents similar tables:

р	q	$p \land q$
Т	Т	Т

 $p \wedge q$ represents only the rows in which it is **T**rue.

SAT

Given a formula φ , the boolean satisfiability problem (SAT) is the problem of finding a model (i.e., a line in which the formula is True)

SMT extends from boolean atom to Theory atoms

SMT extends from boolean atom to Theory atoms

E.g., Theory of Rational Arithmetic $(\mathcal{LA}(\mathbb{Q}))$

 $\varphi \doteq (x > 2) \land (x < 8) \land ((x < 1) \lor (x > 7))$

SMT extends from boolean atom to Theory atoms

E.g., Theory of Rational Arithmetic $(\mathcal{LA}(\mathbb{Q}))$

 $\varphi \doteq (x > 2) \land (x < 8) \land ((x < 1) \lor (x > 7))$

SAT: $\times \doteq 7.5$ (One of the infinitely many models)

SMT extends from boolean atom to Theory atoms

E.g., Theory of Rational Arithmetic $(\mathcal{LA}(\mathbb{Q}))$

 $\varphi \doteq (x > 2) \land (x < 8) \land ((x < 1) \lor (x > 7))$

SAT: $\times \doteq 7.5$ (One of the infinitely many models)

 $\phi \ \doteq \ (x+y>2) \land (x<0) \land (y<0)$

SMT extends from boolean atom to Theory atoms

E.g., Theory of Rational Arithmetic $(\mathcal{LA}(\mathbb{Q}))$

 $\varphi \doteq (x > 2) \land (x < 8) \land ((x < 1) \lor (x > 7))$

SAT: $\times \doteq 7.5$ (One of the infinitely many models)

 $\phi \doteq (x+y>2) \land (x<0) \land (y<0)$

UNSAT: No model exists

Small Digression

Why SMT ?

Example Theories in SMT

- ▶ Difference logic (DL): $((x = y) \land (y - z \le 4)) \rightarrow (x - z \le 6)$
- Linear arithmetic over the rationals $(\mathcal{LA}(\mathbb{Q}))$:

 $(T_{\delta} \rightarrow (s_1 = s_0 + 3.4t - 3.4t_0)) \land (\neg T_{\delta} \rightarrow (s_1 = s_0))$

Examples from R. Sebastiani (http://disi.unitn.it/~rseba/DIDATTICA/SAT_BASED14/2_smt_slides.pdf)

Example Theories in SMT

► Difference logic
$$(D\mathcal{L})$$
:
 $((x = y) \land (y - z \le 4)) \rightarrow (x - z \le 6)$

- ► Linear arithmetic over the rationals $(\mathcal{LA}(\mathbb{Q}))$: $(T_{\delta} \rightarrow (s_1 = s_0 + 3.4t - 3.4t_0)) \land (\neg T_{\delta} \rightarrow (s_1 = s_0))$
- ► Equality and Uninterpreted Functions (EUF): ((x = y) ∧ (y = f(z))) → (g(x) = g(f(z)))
- Arrays (AR): $(i = j) \lor read(write(a, i, e), j) = read(a, j)$
- Bit vectors (\mathcal{BV}) : $x_{[16]}[15:0] = (y_{[16]}[15:8] :: z_{[16]}[7:0]) << w_{[8]}[3:0]$
- ▶ Non-Linear arithmetic over the reals $(\mathcal{NLA}(\mathbb{R}))$: $((c = ab) \land (a_1 = a - 1) \land (b_1 = b + 1)) \rightarrow (c = a_1b_1 + 1)$

Examples from R. Sebastiani (http://disi.unitn.it/~rseba/DIDATTICA/SAT_BASED14/2_smt_slides.pdf)

SMT in practice

- Many Applications: Hardware and Software Model Checking, Automatic test generation, Constraint Programming, Answer Set Programming, ···
- Many Solvers: MathSAT (FBK Italy), CVC4 (NYU/University of Iowa), Z3 (Microsoft), Yices (SRI), Boolector (JKU – Austria), ···
- Beyond the SAT/UNSAT answer
 - Model construction
 - Proofs of unsatisfiability
 - Optimization
 - Model enumeration (All-SMT)

Back to **TFPGs**

Encoding

Observations:

- Each node only depends on its predecessors
- Separation of Boolean and Temporal part
- Need to capture only 2 semantics: OR and AND nodes

Encoding

Observations:

- Each node only depends on its predecessors
- Separation of Boolean and Temporal part
- Need to capture only 2 semantics: OR and AND nodes

$$\varphi(\vec{u}, m) = \bigwedge_{v \in D.} B_{or}(v, m) \land T_{or}(v, m) \land$$
$$\bigwedge_{v \in D.} DC(v) = \text{OR}$$
$$\bigwedge_{v \in D.} DC(v) = \text{AND}$$

where \vec{u} vector of activation states and times, m mode of the system, D set of discrepancies.

$$\begin{aligned} \varphi(\vec{u}, m) = & B_{or}(Y, m) \land T_{or}(Y, m) \\ B_{or}(Y, m) = \vec{ud}(Y) \leftrightarrow [\vec{ud}(X) \land M((X, Y), m)] \\ T_{or}(Y, m) = \vec{ud}(Y) \rightarrow \left(\vec{ud}(X) \land (\vec{udt}(Y) - \vec{udt}(X)) \in ET((X, Y))\right) \end{aligned}$$

$$X \xrightarrow{[1,2]{*}} Y$$

$$\begin{aligned} \varphi(\vec{u},m) = \vec{ud}(Y) \leftrightarrow \vec{ud}(X) \land \\ \vec{ud}(Y) \rightarrow \left(\vec{ud}(X) \land (\vec{udt}(Y) - \vec{udt}(X)) \in [1,2]\right) \end{aligned}$$

$$\varphi(\vec{u}, m) = \bigwedge_{v \in D.} B_{or}(v, m) \land T_{or}(v, m) \land$$
$$\bigwedge_{v \in D.} DC(v) = \text{OR}$$
$$\bigwedge_{v \in D.} DC(v) = \text{AND}$$

$$\varphi(\vec{u}, m) = \bigwedge_{v \in D.} B_{or}(v, m) \land T_{or}(v, m) \land$$
$$\bigwedge_{v \in D.} DC(v) = \text{OR}$$
$$\bigwedge_{v \in D.} DC(v) = \text{AND}$$

Size: $O(|E|) \mathcal{RDL}$ atoms

$$B_{or}(v,m) = \vec{ud}(v) \leftrightarrow \bigvee_{(w,v)\in E} [\vec{ud}(w) \land M((w,v),m)]$$

$$B_{and}(v,m) = \vec{ud}(v) \leftrightarrow \bigwedge_{(w,v) \in E} [\vec{ud}(w) \land M((w,v),m)]$$

$$T_{or}(v, m) = u\vec{d}(v) \rightarrow [$$

$$\bigvee_{\substack{(w,v) \in E}} \left(\vec{ud}(w) \land (\vec{udt}(v) - \vec{udt}(w)) \in ET((w,v)) \right) \land$$

$$\bigwedge_{\substack{(w,v) \in E}} \left(\vec{ud}(w) \rightarrow (\vec{udt}(v) - \vec{udt}(w)) \leq t_{max}((w,v)) \right)]$$

$$T_{and}(v, m) = u\vec{d}(v) \rightarrow [$$

$$\bigwedge_{(w,v)\in E} \left(\vec{ud}(w) \land (\vec{udt}(v) - \vec{udt}(w)) \ge t_{min}((w,v)) \right) \land$$

$$\bigvee_{(w,v)\in E} \left(\vec{ud}(v) \land (\vec{udt}(v) - \vec{udt}(w)) \le t_{max}((w,v)) \right)]$$

Possibility: Can B2_{LOW} be active?

 $\varphi(\vec{u}, m) \wedge \tau(\vec{u}, m)$

with $\tau(\vec{u}, m) = \vec{ud}(B2_{LOW})$ is **SAT** ?

Possibility: Can B2_{LOW} be active?

 $\varphi(\vec{u}, m) \wedge \tau(\vec{u}, m)$

with $\tau(\vec{u}, m) = \vec{ud}(B2_{LOW})$ is **SAT** ? YES

Possibility: Can B2_{LOW} be active in mode Secondary₁?

 $\varphi(\vec{u}, m) \wedge \tau(\vec{u}, m) \wedge m = Secondary_1$

with $\tau(\vec{u}, m) = \vec{ud}(B2_{LOW})$ is **SAT**?

Possibility: Can B2_{LOW} be active in mode Secondary₁?

 $\varphi(\vec{u}, m) \wedge \tau(\vec{u}, m) \wedge m = Secondary_1$

with $\tau(\vec{u}, m) = \vec{ud}(B2_{LOW})$ is **SAT**? NO

Necessity: For $B2_{LOW}$ to be active, $G2_{Off}$ must be active.

$$\varphi(\vec{u}, m) \wedge \neg \tau(\vec{u}, m)$$

with $\tau(\vec{u}, m) = \vec{ud}(B2_{LOW}) \rightarrow \vec{ud}(G2_{Off})$ is UNSAT?

Necessity: For B2_{LOW} to be active, G2_{Off} must be active.

$$\varphi(\vec{u}, m) \wedge \neg \tau(\vec{u}, m)$$

with $\tau(\vec{u}, m) = \vec{ud}(B2_{LOW}) \rightarrow \vec{ud}(G2_{Off})$ is UNSAT? YES

After modifying the TFPG, what can we say on the relation between the original and the new?

- After modifying the TFPG, what can we say on the relation between the original and the new?
- Refinement:

- After modifying the TFPG, what can we say on the relation between the original and the new?
- Refinement:

Given two TFPGs G_1 , G_2 and a (partial) mapping $\gamma(\vec{u_1}, \vec{u_2})$ between their nodes, we say that G_1 refines G_2 if every trace of G_1 can be mapped to a trace of G_2

- After modifying the TFPG, what can we say on the relation between the original and the new?
- Refinement:

Given two TFPGs G_1 , G_2 and a (partial) mapping $\gamma(\vec{u}_1, \vec{u}_2)$ between their nodes, we say that G_1 refines G_2 if every trace of G_1 can be mapped to a trace of G_2

 $\forall \vec{u}_1, m. \varphi_{G1}(\vec{u}_1, m) \rightarrow \exists \vec{u}_2.(\gamma(\vec{u}_1, \vec{u}_2) \land \varphi_{G2}(\vec{u}_2, m))$

- After modifying the TFPG, what can we say on the relation between the original and the new?
- Refinement:

Given two TFPGs G_1 , G_2 and a (partial) mapping $\gamma(\vec{u}_1, \vec{u}_2)$ between their nodes, we say that G_1 refines G_2 if every trace of G_1 can be mapped to a trace of G_2

 $\varphi_{G1}(\vec{u_1}, m) \land \forall \vec{u_2}. \neg (\gamma(\vec{u_1}, \vec{u_2}) \land \varphi_{G2}(\vec{u_2}, m))$

Refinement Example

Refinement Example

Diagnosis and Observations

- Monitors tell us when a discrepancy is activated;
- Diagnosis: Infer the state of the system (e.g., other discrepancies and failure modes) based on the observations (Monitors).

Partially-Observable TFPG:

$$\psi(\vec{o}, \vec{u}, m) = \varphi(\vec{u}, m) \land \\ \bigwedge_{v \in D.DS(v) = \mathbb{M}} (\vec{od}(v) = \vec{ud}(v) \land \vec{odt}(v) = \vec{udt}(v))$$

Diagnosis and Observations

- Monitors tell us when a discrepancy is activated;
- Diagnosis: Infer the state of the system (e.g., other discrepancies and failure modes) based on the observations (Monitors).

Partially-Observable TFPG: $\psi(\vec{o}, \vec{u}, m) = \varphi(\vec{u}, m) \land \\ \bigwedge_{v \in D.DS(v) = M} (\vec{od}(v) = \vec{ud}(v) \land \vec{odt}(v) = \vec{udt}(v))$

What if monitors can break?

Diagnosis and Observations

- Monitors tell us when a discrepancy is activated;
- Diagnosis: Infer the state of the system (e.g., other discrepancies and failure modes) based on the observations (Monitors).

What if monitors can break? \Rightarrow Health Variables!

• Diagnosis condition $\beta(\vec{u})$

• Diagnosis condition $\beta(\vec{u})$

E.g., $\beta = \vec{ud}(fm) \land 5 \le \vec{udt}(fm) \le 10$

• Diagnosis condition $\beta(\vec{u})$

E.g., $\beta = \vec{ud}(fm) \land 5 \le \vec{udt}(fm) \le 10$ E.g., $\beta(\vec{u}) = \vec{ud}(D1) \land \vec{ud}(D2) \land \vec{udt}(D1) \le \vec{udt}(D2)$

• Diagnosis condition $\beta(\vec{u})$

E.g., $\beta = \vec{ud}(fm) \land 5 \le \vec{udt}(fm) \le 10$

E.g., $\beta(\vec{u}) = \vec{ud}(D1) \wedge \vec{ud}(D2) \wedge \vec{udt}(D1) \leq \vec{udt}(D2)$

Diagnosability: Can we always detect β using the monitors?

• Diagnosis condition $\beta(\vec{u})$

E.g., $\beta = \vec{ud}(fm) \land 5 \le \vec{udt}(fm) \le 10$ E.g., $\beta(\vec{u}) = \vec{ud}(D1) \land \vec{ud}(D2) \land \vec{udt}(D1) \le \vec{udt}(D2)$

- **Diagnosability**: Can we always detect β using the monitors?
- Twin-plant construction: Is this UNSAT?

$$\psi(\vec{o}, \vec{u_1}, m, \vec{h_1}) \land \psi(\vec{o}, \vec{u_2}, m, \vec{h_2}) \land \beta(\vec{u_1}) \land \neg \beta(\vec{u_2}) \land \textit{Healthy}(\vec{h_1}, \vec{h_2})$$

• Diagnosis condition $\beta(\vec{u})$

E.g., $\beta = \vec{ud}(fm) \land 5 \le \vec{udt}(fm) \le 10$ E.g., $\beta(\vec{u}) = \vec{ud}(D1) \land \vec{ud}(D2) \land \vec{udt}(D1) \le \vec{udt}(D2)$

- **Diagnosability**: Can we always detect β using the monitors?
- Twin-plant construction: Is this UNSAT?

$$\psi(\vec{o}, \vec{u_1}, m, \vec{h_1}) \land \psi(\vec{o}, \vec{u_2}, m, \vec{h_2}) \land \beta(\vec{u_1}) \land \neg \beta(\vec{u_2}) \land \textit{Healthy}(\vec{h_1}, \vec{h_2})$$

A model for the formula is a critical pair: A pair of observationally-equivalent traces s.t. one satisfies β but the other does not.

- Possibility:
- Necessity:
- Refinement:

- Possibility: SAT: $\varphi(\vec{u}, m) \wedge \tau(\vec{u}, m)$
- Necessity:
- Refinement:

- Possibility: SAT: $\varphi(\vec{u}, m) \wedge \tau(\vec{u}, m)$
- Necessity: UNSAT: $\varphi(\vec{u}, m) \land \neg \tau(\vec{u}, m)$
- Refinement:

- Possibility: SAT: $\varphi(\vec{u}, m) \wedge \tau(\vec{u}, m)$
- Necessity: UNSAT: $\varphi(\vec{u}, m) \land \neg \tau(\vec{u}, m)$
- Refinement: UNSAT:

$$\varphi_{G1}(\vec{u}_1, m) \land \forall \vec{u}_2. \neg (\gamma(\vec{u}_1, \vec{u}_2) \land \varphi_{G2}(\vec{u}_2, m))$$

- Possibility: SAT: $\varphi(\vec{u}, m) \wedge \tau(\vec{u}, m)$
- Necessity: UNSAT: $\varphi(\vec{u}, m) \land \neg \tau(\vec{u}, m)$
- Refinement: UNSAT:

$$\varphi_{G1}(\vec{u_1}, m) \land \forall \vec{u_2}. \neg (\gamma(\vec{u_1}, \vec{u_2}) \land \varphi_{G2}(\vec{u_2}, m))$$

Diagnosability: UNSAT:

 $\psi(\vec{o}, \vec{u_1}, m, \vec{h_1}) \land \psi(\vec{o}, \vec{u_2}, m, \vec{h_2}) \land \beta(\vec{u_1}) \land \neg \beta(\vec{u_2}) \land \textit{Healthy}(\vec{h_1}, \vec{h_2})$

- Possibility: SAT: $\varphi(\vec{u}, m) \wedge \tau(\vec{u}, m)$
- Necessity: UNSAT: $\varphi(\vec{u}, m) \land \neg \tau(\vec{u}, m)$
- Refinement: UNSAT:

$$\varphi_{G1}(\vec{u_1}, m) \land \forall \vec{u_2}. \neg (\gamma(\vec{u_1}, \vec{u_2}) \land \varphi_{G2}(\vec{u_2}, m))$$

Diagnosability: UNSAT:

 $\psi(\vec{o}, \vec{u_1}, m, \vec{h_1}) \land \psi(\vec{o}, \vec{u_2}, m, \vec{h_2}) \land \beta(\vec{u_1}) \land \neg \beta(\vec{u_2}) \land \textit{Healthy}(\vec{h_1}, \vec{h_2})$

Experimental Experience

Case-Study (FAME Project) + Random Benchmark

Easily handle more than 2000 nodes

Future

- More case-studies
- Integration with other tools (E.g., user-friendly interface)
- Synthesis from models
- Automata-based techniques to remove frozen mode assumption (Preliminary work using NuSMV)
- Framework to explore the design space: parameter synthesis

Summary

- TFPG describe temporal and causal relation of off-nominal conditions in a system;
- Validation is important but was mainly unexplored;
- Possible executions of the TFPG as an SMT formula;
- Uniform encoding for multiple types of reasoning tasks: Necessity, Possibility, Refinement, Diagnosability and more ...
- Experimental evaluation shows applicability of the approach for examples of considerable size.

References I

 J. Ezekiel, A. Lomuscio, L. Molnar, and S.M. Veres. Verifying Fault Tolerance and Self-Diagnosability of an Autonomous Underwater Vehicle. In IJCAI, pages 1659–1664, 2011.

Xiaowei Huang. Diagnosability in concurrent probabilistic systems. In Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, 2013.

Shengbing Jiang and Ratnesh Kumar. Failure diagnosis of discrete event systems with linear-time temporal logic fault specifications.

In <u>IEEE Transactions on Automatic Control</u>, pages 128–133, 2001.

References II

 M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. C. Teneketzis.
Failure diagnosis using discrete-event models. 4(2):105–124, 1996.

Anika Schumann.

Diagnosis of discrete-event systems using binary decision diagrams.

Workshop on Principles of Diagnosis (DX'04), pages 197–202, 2004.