
A Formal Foundation of FDI Design
via

Temporal Epistemic Logic

Marco Gario
gario@fbk.eu

Fondazione Bruno Kessler
University of Trento

2016-03-03

1/42

On-Board Autonomy

: Faults?

2/42

On-Board Autonomy: Faults?

2/42

SYSTEM

SEN
SO

R
S

FDIR

A
C

TU
A

TO
R

S

FDI FIR

Fault Detection, Identification and Recovery
FDI(R)

3/42

Fault Detection, Identification and Recovery
FDI(R)

3/42

FDIR development is performed late
in the system development life-cycle
when changes are costly or impossible

Conservative or over-blown designs:

I Monitor everything

I Disable FDI during critical
situations

Certification is difficult

4/42

How to design an FDI ?

I Limited observability (Sensors)

I Interaction of multiple faults and nominal operations

5/42

How to specify an FDI?

There is no standard way of specifying an FDI!

Requirements are usually prescriptive (e.g. thresholding)

⇒ Hard to certify that objectives are met!

6/42

How to specify an FDI?

There is no standard way of specifying an FDI!

Requirements are usually prescriptive (e.g. thresholding)

⇒ Hard to certify that objectives are met!

6/42

Ultimate Goals

I Specification of FDI:
I Early-validation of the FDIR design
I Simplification of the certification process

I Verification of FDI:
I Higher dependability of systems
I Reduction of costs in terms of design effort, implementation

and reuse of existing FDIR components

7/42

Contributions

1. Formal FDI design: [AAAI13, DX13, TACAS14, LMCS15]
I Alarm Specification Language (ASLK) & Formal grounding on

Temporal Epistemic Logic KL1

I Diagnosability testing for ASLK

I Pareto Optimal Sensor Placement [FMCAD14]
I Synthesis of FDI components

2. Validation of Timed Failure Propagation Graphs based on
Satisfiability Modulo Theory [AAAI15]

3. First model-checking approach for KL1 over infinite state
transition systems [AAMAS16]

4. Implementation [IMBSA14, TACAS16] and Application within
ESA projects AUTOGEF and FAME [DASIA12, DASIA14,

IMBSA14b]

8/42

Contributions

1. Formal FDI design: [AAAI13, DX13, TACAS14, LMCS15]
I Alarm Specification Language (ASLK) & Formal grounding on

Temporal Epistemic Logic KL1

I Diagnosability testing for ASLK

I Pareto Optimal Sensor Placement [FMCAD14]
I Synthesis of FDI components

2. Validation of Timed Failure Propagation Graphs based on
Satisfiability Modulo Theory [AAAI15]

3. First model-checking approach for KL1 over infinite state
transition systems [AAMAS16]

4. Implementation [IMBSA14, TACAS16] and Application within
ESA projects AUTOGEF and FAME [DASIA12, DASIA14,

IMBSA14b]

8/42

Contributions

1. Formal FDI design: [AAAI13, DX13, TACAS14, LMCS15]
I Alarm Specification Language (ASLK) & Formal grounding on

Temporal Epistemic Logic KL1

I Diagnosability testing for ASLK

I Pareto Optimal Sensor Placement [FMCAD14]
I Synthesis of FDI components

2. Validation of Timed Failure Propagation Graphs based on
Satisfiability Modulo Theory [AAAI15]

3. First model-checking approach for KL1 over infinite state
transition systems [AAMAS16]

4. Implementation [IMBSA14, TACAS16] and Application within
ESA projects AUTOGEF and FAME [DASIA12, DASIA14,

IMBSA14b]

8/42

Contributions

1. Formal FDI design: [AAAI13, DX13, TACAS14, LMCS15]
I Alarm Specification Language (ASLK) & Formal grounding on

Temporal Epistemic Logic KL1

I Diagnosability testing for ASLK

I Pareto Optimal Sensor Placement [FMCAD14]
I Synthesis of FDI components

2. Validation of Timed Failure Propagation Graphs based on
Satisfiability Modulo Theory [AAAI15]

3. First model-checking approach for KL1 over infinite state
transition systems [AAMAS16]

4. Implementation [IMBSA14, TACAS16] and Application within
ESA projects AUTOGEF and FAME [DASIA12, DASIA14,

IMBSA14b]

8/42

Setting of this Work

Model-based techniques for FDI design for discrete-time
reactive systems. The FDI is compiled to run on-board,
performs passive diagnosis and outputs Boolean alarms.

9/42

Setting of this Work

Model-based techniques for FDI design for discrete-time
reactive systems. The FDI is compiled to run on-board,
performs passive diagnosis and outputs Boolean alarms.

Model-based:

I as opposed to Data-Driven, and Rule-Based

I Early-phase analysis

I Re-use model from functional analysis and recovery planning

9/42

Setting of this Work

Model-based techniques for FDI design for discrete-time
reactive systems. The FDI is compiled to run on-board,
performs passive diagnosis and outputs Boolean alarms.

Discrete-Time Reactive System:

I as opposed to continuous time, and combinational system

I Focus on high-level components interaction
I Reasonable complexity trade-off:

I Combinational ⇒ too limited
I Continuous time ⇒ too expressive

9/42

Setting of this Work

Model-based techniques for FDI design for discrete-time
reactive systems. The FDI is compiled to run on-board,
performs passive diagnosis and outputs Boolean alarms.

Compiled:

I as opposed to on-the-fly

I Easier to verify and certify

I Autonomous system with limited on-board capabilities

I Consistency in behavior (functional and timed)

9/42

Setting of this Work

Model-based techniques for FDI design for discrete-time
reactive systems. The FDI is compiled to run on-board,
performs passive diagnosis and outputs Boolean alarms.

Passive diagnosis

I as opposed to active diagnosis

I Safer to integrate with the system

I Potentially more limited

9/42

Setting of this Work

Model-based techniques for FDI design for discrete-time
reactive systems. The FDI is compiled to run on-board,
performs passive diagnosis and outputs Boolean alarms.

Boolean alarms:

I as opposed to quantitative information (e.g., probabilities),
and explanations (e.g., diagnosis)

I Target decision making ⇒ FR

I Simplify certification

9/42

Formal Model-Based Design of FDI

10/42

I How does the system work?

I What are the faults?

I What sensors are available?

⇒ Infinite/Finite State Discrete-Time Systems: SMV, SLIM

11/42

I What conditions to monitor?

I What alarms should the FDI provide?

I What are acceptable delays?

I Recall finite (bounded) or infinite (perfect) observations?

I Composition with the plant (Synchronous vs Asynchronous)

I Environment/Operational assumptions (Context)

12/42

Diagnosis Condition

Safety condition defining a (set of) configurations of the system.

I Bad configuration of the system:

Both engines are off

I Fault has occurred:

The fuel valve is stuck-closed

I Conditions on the evolution of the system:

The fuel valve has been stuck-closed for at least 3 time-units
and the engines are currently on

13/42

Diagnosis Condition

Safety condition defining a (set of) configurations of the system.

I Bad configuration of the system:

Both engines are off

I Fault has occurred:

The fuel valve is stuck-closed

I Conditions on the evolution of the system:

The fuel valve has been stuck-closed for at least 3 time-units
and the engines are currently on

13/42

Diagnosis Condition

Safety condition defining a (set of) configurations of the system.

I Bad configuration of the system:

Both engines are off

I Fault has occurred:

The fuel valve is stuck-closed

I Conditions on the evolution of the system:

The fuel valve has been stuck-closed for at least 3 time-units
and the engines are currently on

13/42

Diagnosis Condition

Safety condition defining a (set of) configurations of the system.

I Bad configuration of the system:

Both engines are off

I Fault has occurred:

The fuel valve is stuck-closed

I Conditions on the evolution of the system:

The fuel valve has been stuck-closed for at least 3 time-units
and the engines are currently on

13/42

Alarm Condition (Delays)

Delay between the diagnosis condition (β) and the alarm (A)

Whenever the fuel valve gets stuck-closed (β), the FDI should raise
the alarm (A) within 4 time-units (BoundDel)

clk
β

BoundDel(A, β, 4) : A

Also define ExactDel, FiniteDel

14/42

Maximality

BoundDel(A, β, 4)

β

A Maximal
A Non-Maximal
A Non-Maximal

The alarm should go up as soon and for as long as possible

⇒ Deterministic FDI ⇒ Equivalence Checking

15/42

Maximality

BoundDel(A, β, 4)

β

A Maximal
A Non-Maximal
A Non-Maximal

The alarm should go up as soon and for as long as possible

⇒ Deterministic FDI ⇒ Equivalence Checking

15/42

Alarm Specification Language (ASLK)

Pattern-based language to capture requirements:

I Name of the Alarm

I Diagnosis Condition

I Delay information

I Maximality

I (Diagnosability)

BoundDel(AEnginesOff ,Enginea = off ∧Engineb = off , 5,Max = True)

16/42

TFPG Analysis

What is an acceptable Delay?

I Alarm should fire early enough to prevent the propagation of
the failure

⇒ Timed Failure Propagation Graphs

17/42

TFPG Analysis

What is an acceptable Delay?

I Alarm should fire early enough to prevent the propagation of
the failure

⇒ Timed Failure Propagation Graphs

G 1Off

G 2Off

G 1DEAD

G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P,S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P,S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

17/42

TFPG Analysis

Model-Based Diagnosis: only as good as the model

G 1Off

G 2Off

G 1DEAD

G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P, S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P, S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

The TFPG must be validated!

18/42

TFPG Validation

Encode all executions of the TFPG into a Satisfiability Modulo
Theory (SMT) formula

Automated Reasoning:

I Which executions are (not) possible?

I Diagnosability, Diagnosis, Activability

I Refinement

every trace of Right can be mapped to a trace of Left

19/42

TFPG Validation

Encode all executions of the TFPG into a Satisfiability Modulo
Theory (SMT) formula

Automated Reasoning:

I Which executions are (not) possible?

I Diagnosability, Diagnosis, Activability

I Refinement

every trace of Right can be mapped to a trace of Left

B1LOW B1DEAD

[5, 10]{P, S1}
B1LOW

B1S

B1P

B1DEAD

[5,
5]{S1}

[10, 10]{P}

[0, 0]{∗}

[0,
0]{∗}

19/42

TFPG Validation

Prototype: MathSAT, Z3, pySMT

0 500 1000 1500 2000 2500

0
50

10
0

15
0

20
0

25
0

30
0

Number of nodes

R
ef

in
em

en
t t

im
e

(s
ec

)

TO

Refinement
Non−refinement

0 500 1000 1500 2000 2500
0

50
10

0
15

0
20

0
25

0
30

0

Number of nodes

D
ia

gn
os

ab
ili

ty
 ti

m
e

(s
ec

)

TO

Easily handle >2000 nodes (5x industrial size)

20/42

Requirements
Specification

Requirements
Validation

System Modeling

Verification

Synthesis

Manual Design

21/42

Requirements
Specification

Requirements
Validation

System Modeling

Verification

Synthesis

Manual Design

21/42

I Over-constrained or Under-constrained

I Subsumption

Is it possible to build a diagnoser for the System?

Diagnosability

22/42

I Over-constrained or Under-constrained

I Subsumption

Is it possible to build a diagnoser for the System?

Diagnosability

22/42

Diagnosability

Observations might not be sufficient to disambiguate good
and bad executions: Critical Pair

I No critical pair ⇒ System diagnosable [Sampath95]

I What if only 1 critical pair? Too coarse!

⇒ Trace Diagnosability: Diagnose as much as possible

23/42

Diagnosability

1. Trace Diagnosability: Diagnose as much as possible
I 3-valued alarms:

� Fault did not occur
� Fault occurred
� Uncertainty

2. Encode System and Trace Diagnosability as properties in
Temporal Epistemic Logic

3. System Diagnosability Testing via Twin-Plant for ASLK

4. Optimization Problem ⇒ Pareto Optimal Sensor
Placement

Preserves diagnosability while reducing the sensors set to
optimize a multi-cost function

23/42

Diagnosability

1. Trace Diagnosability: Diagnose as much as possible
I 3-valued alarms:

� Fault did not occur
� Fault occurred
� Uncertainty

2. Encode System and Trace Diagnosability as properties in
Temporal Epistemic Logic

3. System Diagnosability Testing via Twin-Plant for ASLK

4. Optimization Problem ⇒ Pareto Optimal Sensor
Placement

Preserves diagnosability while reducing the sensors set to
optimize a multi-cost function

23/42

Requirements
Specification

Requirements
Validation

System Modeling

Verification

Synthesis

Manual Design

24/42

Requirements
Specification

Requirements
Validation

System Modeling

Verification

Synthesis

Manual Design

24/42

Advantages:

I Correct by construction

I Proof of realizability

I Quick prototype

Challenges:

I Computationally hard
(sometimes undecidable)

I Not human readable

25/42

State of the Art

Transition System Type

Finite Infinite

R
ec

a
ll

Bounded

Parameter Synthesis Parameter Synthesis

Perfect Sampath, Schumann

Belief Explorer

Timed, Stochastic

∼ (TFPG Abstraction)

Limitations:

I Extend to ASLK

I Avoid run-time computation

26/42

State of the Art

Transition System Type

Finite Infinite

R
ec

a
ll

Bounded Parameter Synthesis Parameter Synthesis

Perfect Sampath, Schumann

Belief Explorer

Timed, Stochastic

∼ (TFPG Abstraction)

Limitations:

I Extend to ASLK

I Avoid run-time computation

26/42

State of the Art

Transition System Type

Finite Infinite

R
ec

a
ll

Bounded Parameter Synthesis Parameter Synthesis

Perfect Sampath, Schumann
Belief Explorer

Timed, Stochastic

∼ (TFPG Abstraction)

Limitations:

I Extend to ASLK

I Avoid run-time computation

26/42

Bounded Recall

C

B

A

0 1 2

X

Y
States

t0 t1 t2
A0 B1 A1

A1 B2 C1

A2 C0 A0

A2 C0 B2

B0 A2 C0

B1 A1 B2

B2 C1 B0

C0 A0 B1

C0 B2 C1

C1 B0 A2

Observations
t0 t1 t2

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

Recall = 3

(x , y)(x , y)(x , y)

27/42

Bounded Recall

C

B

A

0 1 2

X

Y
States

t0 t1 t2
A0 B1 A1

A1 B2 C1

A2 C0 A0

A2 C0 B2

B0 A2 C0

B1 A1 B2

B2 C1 B0

C0 A0 B1

C0 B2 C1

C1 B0 A2

Observations
t0 t1 t2

(x , y) (x , y) (x , y)

(x , y)

(x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y)

(x , y)

Recall = 3

(x , y)

(x , y)(x , y)

27/42

Bounded Recall

C

B

A

0 1 2

X

Y
States

t0 t1 t2
A0 B1 A1

A1 B2 C1

A2 C0 A0

A2 C0 B2

B0 A2 C0

B1 A1 B2

B2 C1 B0

C0 A0 B1

C0 B2 C1

C1 B0 A2

Observations
t0 t1 t2

(x , y) (x , y) (x , y)

(x , y) (x , y)

(x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y)

Recall = 3

(x , y)(x , y)

(x , y)

27/42

Bounded Recall

C

B

A

0 1 2

X

Y
States

t0 t1 t2
A0 B1 A1

A1 B2 C1

A2 C0 A0

A2 C0 B2

B0 A2 C0

B1 A1 B2

B2 C1 B0

C0 A0 B1

C0 B2 C1

C1 B0 A2

Observations
t0 t1 t2

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y)

Recall = 3

(x , y)(x , y)(x , y)

27/42

Bounded Recall

C

B

A

0 1 2

X

Y
States

t0 t1 t2
A0 B1 A1

A1 B2 C1

A2 C0 A0

A2 C0 B2

B0 A2 C0

B1 A1 B2

B2 C1 B0

C0 A0 B1

C0 B2 C1

C1 B0 A2

Observations
t0 t1 t2

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

Recall = 3

(x , y)(x , y)(x , y)

27/42

Requirements
Specification

Requirements
Validation

System Modeling

Verification

Synthesis

Manual Design

28/42

Requirements
Specification

Requirements
Validation

System Modeling

Verification

Synthesis

Manual Design

28/42

Requirements
Specification

Requirements
Validation

System Modeling

Verification

Synthesis

Manual Design

28/42

I Formal Model + Formal Requirements ⇒ Model-Checking

I Requirements translated into KL1

⇒ Develop effective model-checking algorithms for KL1 over
infinite state transition systems

29/42

KL1

I LTL + KA Operator:

G (KASunny)

It is always the case that Agent A knows that it is Sunny

I KA Operator: two points in a trace cannot be distinguished if
they have the same observations (up to recall) for A

I KL1: Disallow nesting of K (i.e., KAKBϕ)

30/42

KL1 Example

I 3 cards: 2 Red, 1 Green

I (Alice = Red ∧ Bob = Red)→ KAlice(Bob = Red)?

No!

I (Alice = Green)→ KAlice(Bob = Red)?

Yes!

Alice

Bob Eve

Bob Eve

Alice Bob Eve

31/42

KL1 Example

I 3 cards: 2 Red, 1 Green

I (Alice = Red ∧ Bob = Red)→ KAlice(Bob = Red)?

No!

I (Alice = Green)→ KAlice(Bob = Red)?

Yes!

Alice

Bob Eve

Bob Eve

Alice Bob Eve

31/42

KL1 Example

I 3 cards: 2 Red, 1 Green

I (Alice = Red ∧ Bob = Red)→ KAlice(Bob = Red)? No!

I (Alice = Green)→ KAlice(Bob = Red)?

Yes!

Alice

Bob Eve

Bob Eve

Alice Bob Eve

31/42

KL1 Example

I 3 cards: 2 Red, 1 Green

I (Alice = Red ∧ Bob = Red)→ KAlice(Bob = Red)? No!

I (Alice = Green)→ KAlice(Bob = Red)?

Yes!

Alice

Bob Eve

Bob Eve

Alice Bob Eve

31/42

KL1 Example

I 3 cards: 2 Red, 1 Green

I (Alice = Red ∧ Bob = Red)→ KAlice(Bob = Red)? No!

I (Alice = Green)→ KAlice(Bob = Red)? Yes!

Alice

Bob Eve

Bob Eve

Alice Bob Eve

31/42

ASLK ⇒ KL1

BoundDelK (AEnginesOff ,Enginea = off ∧ Engineb = off , 5

Max = True,System)

⇓

G (AEngineOff → O≤5(Enginea = off ∧ Engineb = off)) ∧

G (Enginea = off ∧ Engineb = off → F≤5AEngineOff) ∧

G (KO≤5(Enginea = off ∧ Engineb = off)→ AEngineOff)

Unified Encoding ⇒ recall and synchronicity embedded in KA

32/42

ASLK ⇒ KL1

Template Maximality = False Maximality = True

d
ia

g
=

S
ys

te
m ExactDel

G (A→ Y nβ) ∧ G (β → X nA) G (A→ Y nβ) ∧ G (β → X nA) ∧
G (KY nβ → A)

BoundDel
G (A→ O≤nβ) ∧ G (β → F≤nA) G (A→ O≤nβ) ∧ G (β → F≤nA) ∧

G (KO≤nβ → A)

FiniteDel
G (A→ Oβ) ∧ G (β → FA) G (A→ Oβ) ∧ G (β → FA) ∧

G (KOβ → A)

d
ia

g
=

T
ra

ce

ExactDel
G (A→ Y nβ) ∧ G (A→ Y nβ) ∧

G ((β → X nKY nβ) → (β → X nA)) G ((β → X nKY nβ) → (β → X nA)) ∧

G (KY nβ → A)

BoundDel
G (A→ O≤nβ) ∧ G (A→ O≤nβ) ∧

G ((β → F≤nKO≤nβ) → (β → F≤nA)) G ((β → F≤nKO≤nβ) → (β → F≤nA)) ∧

G (KO≤nβ → A)

FiniteDel
G (A→ Oβ) ∧ G (A→ Oβ) ∧

G ((β → FKOβ) → (β → FA)) G ((β → FKOβ) → (β → FA)) ∧

G (KOβ → A)

Correctness Completeness Diagnosability Maximality

33/42

Model-Checking KL1

Transition System Type

Finite Infinite

R
ec

a
ll

Bounded MCMAS, MCK

, Lazy Lazy

Perfect MCK

34/42

Model-Checking KL1

Transition System Type

Finite Infinite

R
ec

a
ll

Bounded MCMAS, MCK, Lazy Lazy

Perfect MCK

34/42

Lazy KL1 Model-Checking

I Bounded Recall: Semantics depends only on the state

I Reduce to LTL + Set states satisfying Kβ

I Lazy: On-demand computation of states in Kβ

M |= G (Kβ) ? Cex: A

,B

Optimizations: Static Learning, Generalization, Dual-Rail
Encoding, InvKL1

35/42

Lazy KL1 Model-Checking

I Bounded Recall: Semantics depends only on the state

I Reduce to LTL + Set states satisfying Kβ

I Lazy: On-demand computation of states in Kβ

Kβ ¬Kβ

States

A B
M |= G (Kβ) ? Cex: A,B

Optimizations: Static Learning, Generalization, Dual-Rail
Encoding, InvKL1

35/42

Lazy KL1 Model-Checking

I Bounded Recall: Semantics depends only on the state

I Reduce to LTL + Set states satisfying Kβ

I Lazy: On-demand computation of states in Kβ

Kβ ¬KβUndef

States

A B
M |= G (Kβ) ? Cex: A

,B

Optimizations: Static Learning, Generalization, Dual-Rail
Encoding, InvKL1

35/42

Lazy KL1 Model-Checking

I Bounded Recall: Semantics depends only on the state

I Reduce to LTL + Set states satisfying Kβ

I Lazy: On-demand computation of states in Kβ

Kβ ¬KβUndef

States

A

B
M |= G (Kβ) ? Cex: A

,B

Optimizations: Static Learning, Generalization, Dual-Rail
Encoding, InvKL1

35/42

Lazy KL1 Model-Checking

I Bounded Recall: Semantics depends only on the state

I Reduce to LTL + Set states satisfying Kβ

I Lazy: On-demand computation of states in Kβ

Kβ ¬KβUndef

States

A

B
M |= G (Kβ) ? Cex: A,B

Optimizations: Static Learning, Generalization, Dual-Rail
Encoding, InvKL1

35/42

Lazy KL1 Model-Checking

I Bounded Recall: Semantics depends only on the state

I Reduce to LTL + Set states satisfying Kβ

I Lazy: On-demand computation of states in Kβ

Kβ ¬KβUndef

States

A B
M |= G (Kβ) ? Cex: A,B

Optimizations: Static Learning, Generalization, Dual-Rail
Encoding, InvKL1

35/42

Experimental Results

 1

 10

 100

 1000

 1 10 100 1000

M
C

K
 /

M
C

M
A

S

Lazy Best

TO
TO

 1

 10

 100

 1000

 1 10 100 1000

M
C

K
 /

M
C

M
A

S

Lazy Best

TO
TO

 1

 10

 100

 1000

 1 10 100 1000

M
C

K
 /

M
C

M
A

S

Lazy Best

TO
TO

Recall #Obs Lazy Basic Lazy Best

0 11 3.28 1.46
5 66 3536.17 52.72
10 121 TO 103.47
20 231 TO 288.31
40 451 TO 981.11

I Improvement w.r.t. existing tools: MCMAS – MCK

I Change in core technology (BDD vs SAT)

36/42

Formal Model-Based Design of FDI

Requirements
Specification:

ASL
k
, Delay, Recall,

Synchronicity

Requirements
Validation:

Diagnosability, Sensor
Placement

System Modeling:
Faults, Sensors,

SMV, SLIM

Verification:
KL1 Model-Checking

Synthesis:
Recall, Finite/Infinite,

Belief Explorer, ParamSynth

Manual Design

37/42

AUTOGEF and FAME

AUTOGEF

I Automated Generation of
FDIR

I Specification & Synthesis

I Finite Discrete Time

FAME

I FDIR Development
Methodology and V&V

I Process & Timed Propagation

I Infinite Continuous Time

Include Fault Recovery and coordination

38/42

Evaluation

Exomars TGO case-study:

I Non-experts in formal verification

I 6-10 Alarms ⇒ 700-2413 States

I Positive Evaluation:

Reach a better understanding of
System and FDIR designs

39/42

Conclusions

1. Formal FDI design:
I Unified specification (ASLK) that accounts for multiple

issues such as synchronicity, recall, delays etc.
I Synthesis of FDI components
I Diagnosability testing for ASLK , Algorithm for Pareto

Optimal Sensor Placement

2. Validation of Timed Failure Propagation Graphs based on
Satisfiability Modulo Theory

3. Model-checking KL1 over infinite/finite state systems

4. ESA projects AUTOGEF and FAME

FDI Design and Temporal Epistemic Logic

40/42

Future Work

I Case-studies: End-to-end evaluation within industrial setting

I Distributed FDI: Architectural and Contract-Based Design

I Model-Checking: KLn and improve performances

41/42

Thank You! Questions?

A Formal Foundation of FDI Design
via

Temporal Epistemic Logic

- FDI Specification and & ASLK

- FDI Verification, Validation and Synthesis

- KL1 Model-Checking

- TFPG Validation, Pareto Optimal Sensor Placement

- AUTOGEF, FAME

42/42

ASLK

Pareto

KL1

Synthesis

Industrial

Timed Failure Propagation Graphs

Conclusion

43/42

Summary View

Recall Task Plant Logic / Problem Tool / Algorithm

BR Diagnosability,
Verification

Infinite KL1 Lazy

Synthesis Infinite Parameter Synthesis nuXmv

PR Diagnosability, Finite KL1 MCK
Verification Infinite LTL nuXmv

Infinite KL1 OPEN

Synthesis Finite Belief Explorer xSAP
Infinite OPEN OPEN/Abstraction

44/42

Diagnosis Condition

Safety condition defining a (set of) configurations of the system.

I Bad configuration of the system:

Both engines are off

I Fault has occurred:

The fuel valve is stuck-closed

I Conditions on the evolution of the system:

The fuel valve has been stuck-closed for at least 3 time-units
and the engines are currently on

45/42

Diagnosis Condition

Safety condition defining a (set of) configurations of the system.

I Bad configuration of the system:

Both engines are off

I Fault has occurred:

The fuel valve is stuck-closed

I Conditions on the evolution of the system:

The fuel valve has been stuck-closed for at least 3 time-units
and the engines are currently on

45/42

Diagnosis Condition

Safety condition defining a (set of) configurations of the system.

I Bad configuration of the system:

Both engines are off

I Fault has occurred:

The fuel valve is stuck-closed

I Conditions on the evolution of the system:

The fuel valve has been stuck-closed for at least 3 time-units
and the engines are currently on

45/42

Diagnosis Condition

Safety condition defining a (set of) configurations of the system.

I Bad configuration of the system:

Both engines are off

I Fault has occurred:

The fuel valve is stuck-closed

I Conditions on the evolution of the system:

The fuel valve has been stuck-closed for at least 3 time-units
and the engines are currently on

45/42

Alarm Condition (Delays)

Delay between the diagnosis condition β and the alarm A

Whenever the fuel valve gets stuck-closed, the FDI should raise the
alarm within 4 time-units (BoundDel)

clk
β

ExactDel(A, β, 2) : A
BoundDel(A, β, 4) : A

FiniteDel(A, β) : A

46/42

Maximality

I The alarm should go up as soon and for as long as possible

BoundDel(A, β, 4)

β
A Maximal

A Non-Maximal
A Non-Maximal

Maximality removes ambiguity

47/42

Diagnosability

Always possible to satisfy an Alarm Condition?

No! Observations might not be sufficient to disambiguate:

Critical Pair

48/42

Diagnosability

Always possible to satisfy an Alarm Condition?

No! Observations might not be sufficient to disambiguate:

Critical Pair

48/42

Diagnosability

I No critical pair = System diagnosable [Sampath]

I Too coarse-grained? E.g., 1 critical pair?

⇒ Trace Diagnosability: Diagnose as much as possible

48/42

Example of an ASL requirement

I Detect when both engines are off.

I Delay of at most 5 time-units.

I Require maximality and system diagnosability

BoundDel(AEnginesOff ,Enginea = off ∧ Engineb = off , 5

Max = True,System)

49/42

Example of an ASL requirement

I Detect when both engines are off.

I Delay of at most 5 time-units.

I Require maximality and system diagnosability

BoundDel(AEnginesOff ,Enginea = off ∧ Engineb = off , 5

Max = True,System)

49/42

From ASL to Logic

Linear Temporal Logic

I Describes properties of a single trace.

I Cannot encode Diagnosability (neither Maximality)

What could an ideal diagnoser know with the available sensors?

Reasoning about Knowledge: Epistemic Logic

50/42

From ASL to Logic
Linear Temporal Logic

I Describes properties of a single trace.

I Cannot encode Diagnosability (neither Maximality)

What could an ideal diagnoser know with the available sensors?

Reasoning about Knowledge: Epistemic Logic

50/42

From ASL to Logic

Linear Temporal Logic

I Describes properties of a single trace.

I Cannot encode Diagnosability (neither Maximality)

What could an ideal diagnoser know with the available sensors?

Reasoning about Knowledge: Epistemic Logic

50/42

From ASL to Logic

ASL maximality = False maximality = True

diag = System Single Trace (LTL)

Set of Traces (LTL+K)

diag = Trace

Set of Traces (LTL+K) Set of Traces (LTL+K)

LTL+K: LTL + Epistemic operator K

51/42

From ASL to Logic

ASL maximality = False maximality = True

diag = System Single Trace (LTL) Set of Traces (LTL+K)

diag = Trace Set of Traces (LTL+K) Set of Traces (LTL+K)

LTL+K: LTL + Epistemic operator K

51/42

Alarm Specification Language (ASL)

I Alarm Variable A

I Diagnosis Condition β (Past-only LTL)

I Delay n (Bounded LTL operators)

⇒ Formalization of:

Correctness : Alarm occurrence implies occurrence of the
fault in the past.
Completeness : Fault occurrence implies Alarm occurrence in

the future.

BoundDel(A, β, n) : G (A→ O≤nβ) ∧ G (β → F≤nA)

52/42

Temporal Epistemic Logic

Kφ holds at time n in a trace σ1 iff φ holds at time n in all traces
that are observational equivalent to σ1.

σ1, n |= Kφ iff ∀σ2. obs(σn
1) = obs(σn

2)⇒ σ2, n |= φ.

53/42

Diagnosability as Epistemic Property

Could the ideal diagnoser detect the diagnosis condition?

Diagnosability : Whenever the diagnosis condition β occurs the
ideal diagnoser will (eventually) know that it occurred.

BoundDel(A, β, n) : G (β → F≤nKO≤nβ)
Epistemic Encoding provides a unified way of dealing with the
problem.

54/42

Maximality as Epistemic Property

The alarm should go up as soon and for as long as possible

Maximality : As long as the ideal diagnoser can be certain about
the occurrence of β the alarm A will be active.

BoundDel(A, β, n) : G (KO≤nβ → A)

55/42

ASLK (Overview)
Template maximality = False maximality = True

d
ia

g
=

S
ys

te
m ExactDel

G (A→ Y nβ) ∧ G (β → X nA) G (A→ Y nβ) ∧ G (β → X nA) ∧
G (KY nβ → A)

BoundDel
G (A→ O≤nβ) ∧ G (β → F≤nA) G (A→ O≤nβ) ∧ G (β → F≤nA) ∧

G (KO≤nβ → A)

FiniteDel
G (A→ Oβ) ∧ G (β → FA) G (A→ Oβ) ∧ G (β → FA) ∧

G (KOβ → A)

d
ia

g
=

T
ra

ce

ExactDel
G (A→ Y nβ) ∧ G (A→ Y nβ) ∧

G ((β → X nKY nβ) → (β → X nA)) G ((β → X nKY nβ) → (β → X nA)) ∧

G (KY nβ → A)

BoundDel
G (A→ O≤nβ) ∧ G (A→ O≤nβ) ∧

G ((β → F≤nKO≤nβ) → (β → F≤nA)) G ((β → F≤nKO≤nβ) → (β → F≤nA)) ∧

G (KO≤nβ → A)

FiniteDel
G (A→ Oβ) ∧ G (A→ Oβ) ∧

G ((β → FKOβ) → (β → FA)) G ((β → FKOβ) → (β → FA)) ∧

G (KOβ → A)

Correctness Completeness Diagnosability Maximality
56/42

Example

BoundDelK (AEnginesOff ,Enginea = off ∧ Engineb = off , 5

Max = True,System)

⇓

G (AEngineOff → O≤5(Enginea = off ∧ Engineb = off)) ∧

G (Enginea = off ∧ Engineb = off → F≤5AEngineOff) ∧

G (KO≤5(Enginea = off ∧ Engineb = off)→ AEngineOff)

57/42

Related

I Jiang and Kumar[3]: Specification as LTL

I Ezekiel et al. [1] Huang [2]: Diagnosability as epistemic

Our framework goes in the same directions: unifying view of other
aspects of the design process (e.g., validation and synthesis), and
considering key problems such as delays, maximality and
trace-diagnosability.
Synthesis procedure similar to Schumann’s[5], but we capture more
expressive diagnosis conditions, and introduce delays.

Theorem
Let α be a propositional formula, α is d-delay diagnosable (ala
Sampath) in P iff BoundDel(A,Oα, d) is diagnosable in P.

58/42

Sensor Placement

Can we minimize the number of sensors, while preserving
diagnosability? Sensor Placement

I Subset of sensors that preserves diagnosability

I Sensors have a cost (energy, weight, monetary)

E.g., Trade-off between cost and delay

⇒ Pareto Optimality

59/42

Pareto Optimal Sensor Placement

Simple version: 43/81 – Optimized version: 81/81

>170 bits and 40 obs.

60/42

Pareto Optimal Sensor Placement

Simple version: 43/81 – Optimized version: 81/81

>170 bits and 40 obs.

60/42

Property-Monotonicity and Cost-Monotonicity

61/42

Experiments: solved instances

one-cost
Family #Instances valuations-first slicing costs-first

c432 32 11 13 32
cassini 21 6 12 21
elevator 4 4 4 4
orbiter 4 4 4 4
roversmall 4 4 4 4
roverbig 4 4 4 4
x34 4 4 4 4
product lines 8 6 4 8

TOTAL 81 43 49 81

62/42

Experiments: Impact of Reduce in costs-first

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

co
st

s-
fi
rs

t
w

it
h
o
u
t

re
d

u
ce

costs-first

63/42

Background

I Transition system S =̇ (X ,X0, I ,T), set of states X , initial
states X0, inputs I and the transition relation T ⊆ X × I × X

I Trace σ =̇ x0, i1, x1, · · · , x0 ∈ X0,
∀j .(xj , ij+1, xj+1) ∈ T

I Observation obs(xj) =̇ oj ∈ O (similarly for ij)

I Observable Trace obs(σ) =̇ obs(x0), obs(i1), obs(x1), . . .

I State x defines unobservable condition of the system:

The fuel valve is closed

I Observation obs(x) defines an observable situation:

No fuel is coming out of the pipe

64/42

Lazy KL1 Model-Checking

I Bounded Recall: Semantics depends only on the state

I Reduce to LTL + Set states satisfying Kβ

I Lazy: On-demand computation of states in Kβ

M |= G (Kβ) ? Cex: A,B

65/42

Lazy KL1 Model-Checking

I Bounded Recall: Semantics depends only on the state

I Reduce to LTL + Set states satisfying Kβ

I Lazy: On-demand computation of states in Kβ

Kβ ¬Kβ

States

A B
M |= G (Kβ) ? Cex: A,B

65/42

Lazy KL1 Model-Checking

I Bounded Recall: Semantics depends only on the state

I Reduce to LTL + Set states satisfying Kβ

I Lazy: On-demand computation of states in Kβ

Kβ ¬KβUndef

States

A B
M |= G (Kβ) ? Cex: A,B

65/42

Lazy KL1 Model-Checking

I Bounded Recall: Semantics depends only on the state

I Reduce to LTL + Set states satisfying Kβ

I Lazy: On-demand computation of states in Kβ

Kβ ¬KβUndef

States

A

B
M |= G (Kβ) ? Cex: A,B

65/42

Lazy KL1 Model-Checking

I Bounded Recall: Semantics depends only on the state

I Reduce to LTL + Set states satisfying Kβ

I Lazy: On-demand computation of states in Kβ

Kβ ¬KβUndef

States

A B
M |= G (Kβ) ? Cex: A,B

65/42

Experimental Results

Optimizations are crucial:

I Static Learning,

I Generalization,

I Dual-Rail Encoding,

I InvKL1

Recall #Obs Lazy Basic Lazy Best

0 11 3.28 1.46
5 66 3536.17 52.72
10 121 TO 103.47
20 231 TO 288.31
40 451 TO 981.11

 1

 10

 100

 1000

 1 10 100 1000

A
ll

S
ta

te
s

Last State

TO
TO

 1

 10

 100

 1000

 1 10 100 1000

A
ll

S
ta

te
s

Last State

TO
TO

66/42

#DC MCMAS Lazy

40 3.66 1.83
80 26.57 8.54
120 169.43 25.9
160 322.45 55.2
200 528.42 104.02
240 1582.68 174.86
280 TO 287.06
320 TO 391.57
360 TO 598.4
400 TO 765.96

67/42

Lazy algorithm

1: function verify(M, ϕ)
2: φρ, placeholders := bool abstraction(ϕ)
3: Mρ := extend(M, placeholders)
4: loop
5: cex := Mρ |= φρ
6: if not cex then
7: return “Satisfied”
8: end if
9: if is spurious(M, cex, placeholders) then

10: φρ := learn lemma(M, cex, placeholders, φρ)
11: else
12: return cex
13: end if
14: end loop
15: end function

68/42

Lazy algorithm

1: function is spurious(M, cex, placeholders)
2: for state ∈ cex do
3: for ρKAβ ∈ placeholders do
4: p value := ρKAβ(state)
5: if not ((state ∈ JKAβK) ↔ p value) then
6: return True // Spurious!
7: end if
8: end for
9: end for

10: return False
11: end function

68/42

Background

LTL with Past:

I X in the next state, Y in the previous state.

I X nϕ =̇ XX n−1ϕ (X 0ϕ = ϕ)

I F Finally, O Once.

I F≤nϕ =̇ ϕ ∨ Xϕ ∨ · · · ∨ X nϕ

I Similar definitions for Y n, O≤n

σ1, n |= Kφ iff ∀σ2. obs(σn
1) = obs(σn

2)⇒ σ2, n |= φ.

69/42

Temporal Epistemic Logic

I LTL + K

Kφ holds at time n in a trace σ1 iff φ holds at time n in all traces
that are observational equivalent to σ1.

σ1, n |= Kφ iff ∀σ2. obs(σn
1) = obs(σn

2)⇒ σ2, n |= φ.

Kφ as ideal diagnoser “Knows” that φ

70/42

Synthesis

Given a System and a Specification, we build a diagnoser that is:

I Correct,

I Trace Complete,

I Maximal

71/42

Synthesis as Param Synthesis

States
t0 t1 t2
A0 B1 A1

A1 B2 C1

A2 C0 A0

A2 C0 B2

B0 A2 C0

B1 A1 B2

B2 C1 B0

C0 A0 B1

C0 B2 C1

C1 B0 A2

Observations
t0 t1 t2

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

(x , y) (x , y) (x , y)

Figure: Traces and Observations for Recall 2

72/42

FDI Synthesis

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 20 30 40 50 60 70 80 90

R
u
n
ti

m
e
 (

s)

Size (N)

90%
60%
30%

Figure: BR MB Free

73/42

FDI Synthesis

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 20 30 40 50 60 70 80 90

R
u
n
ti

m
e
 (

s)

Size (N)

90%
60%
30%

Figure: BR MB InitX

73/42

FDI Synthesis

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 20 30 40 50 60 70 80 90

R
u
n
ti

m
e
 (

s)

Size (N)

90%
60%
30%

Figure: PR MB Free

73/42

FDI Synthesis

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 20 30 40 50 60 70 80 90

R
u
n
ti

m
e
 (

s)

Size (N)

90%
60%
30%

Figure: PR MB InitX

73/42

FDI Synthesis

 1

 10

 100

 1000

 1 10 100 1000

B
o
u
n
d

e
d

 R
e
ca

ll

Perfect Recall

TO
TO

 1

 10

 100

 1000

 1 10 100 1000

B
o
u
n
d

e
d

 R
e
ca

ll

Perfect Recall

TO
TO

 1

 10

 100

 1000

 1 10 100 1000

B
o
u
n
d

e
d

 R
e
ca

ll

Perfect Recall

TO
TO

Figure: BS vs PR (Blue: InitX – Red: Free)

73/42

FDI Synthesis

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 15 20 25 30 35 40 45

R
u
n
ti

m
e
 (

s)

Size (N)

0
1
2
3
4
5

Figure: BR MB Free (obs 30%)

73/42

Invitation to Tender

I AUTOGEF (Automated
Generation of FDIR)

I FAME (FDIR Development
Methodology and V&V)

74/42

AUTOGEF and FAME

Process and Tools for:

I Definition FDIR Requirements

I Performing Validation, Verification and Synthesis

Tools built on existing ESA COMPASS technology.

75/42

Evaluation

Exomars TGO case-study:

I Usage by non-experts in
formal verification

I Synthesis of FDI with 750
states in seconds

I Automated synthesis enables
faster design iterations

I Positive feedback by ESA and
industrial partners

76/42

FAME flow

77/42

FAME flow

77/42

FAME flow

77/42

FAME flow

77/42

FAME flow

Table: Process break-down

Phase Steps COMPASS

Analyze User Require-
ments

System Modeling & Fault Extension Formal system modeling – nominal and
faulty behavior (in SLIM); automatic model
extension

Formal Analyses Derive requirements on FDIR design
Mission Modeling Definition of mission, phases, and spacecraft

configurations

Perform Timed Failure
Propagation Analysis

Formal Analyses Derive information on causality and fault
propagation (input for TFPG modeling)

TFPG Modeling/Synthesis TFPG modeling, editing, synthesis
TFPG Analyses TFPG behavioral validation, TFPG effec-

tiveness validation

Define FDIR Objectives
and Strategies

FDIR Requirements Specification Modeling of FDIR objectives and strategies,
definition of pre-existing components to be
re-used, and FDIR hierarchy

Design the FDIR FDIR Modeling/Synthesis Formal modeling and automatic synthesis of
FDIR

Formal Analyses FDIR effectiveness verification

77/42

78/42

Failure Propagation

Failures can propagate through-out the system:

Many off-nominal behaviors ⇒ Masking of faults

Generator 1

Generator 2

Battery 1

Battery 2

Sensor 1

Sensor 2

Device

Generator broken? Generator AND Sensor broken?

79/42

Failure Propagation

Failures can propagate through-out the system:

Many off-nominal behaviors ⇒ Masking of faults

Generator 1

Generator 2

Battery 1

Battery 2

Sensor 1

Sensor 2

Device

Generator broken? Generator AND Sensor broken?

79/42

Failure Propagation

Failures can propagate through-out the system:

Many off-nominal behaviors ⇒ Masking of faults

Generator 1

Generator 2

Battery 1

Battery 2

Sensor 1

Sensor 2

Device

Generator broken? Generator AND Sensor broken?

79/42

TFPG Analysis

What is an acceptable Delay?

I Alarm should fire early enough to prevent the propagation of
the failure

⇒ Timed Failure Propagation Graphs

80/42

TFPG Analysis

What is an acceptable Delay?

I Alarm should fire early enough to prevent the propagation of
the failure

⇒ Timed Failure Propagation Graphs

Generator 1

Generator 2

Battery 1

Battery 2

Sensor 1

Sensor 2

Device

80/42

TFPG Analysis

What is an acceptable Delay?

I Alarm should fire early enough to prevent the propagation of
the failure

⇒ Timed Failure Propagation Graphs

G 1Off

G 2Off

G 1DEAD

G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P,S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P,S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

80/42

Goal: Model propagation of failures to perform
better reasoning

81/42

TFPG Validation

Encode all executions of the TFPG into a Satisfiability Modulo
Theory (SMT) formula

I Each node only depends on its predecessors

I Separation of Boolean and Temporal part

I Need to capture only 2 semantics: OR and AND nodes

ϕ(~u,m) =
∧

v∈D. DC(v)=OR

Bor (v ,m) ∧ Tor (v ,m) ∧

∧
v∈D. DC(v)=AND

Band (v ,m) ∧ Tand (v ,m)

where ~u vector of activation states and times, m mode of the
system, D set of discrepancies.

82/42

TFPG Validation

Encode all executions of the TFPG into a Satisfiability Modulo
Theory (SMT) formula

I Each node only depends on its predecessors

I Separation of Boolean and Temporal part

I Need to capture only 2 semantics: OR and AND nodes

ϕ(~u,m) =
∧

v∈D. DC(v)=OR

Bor (v ,m) ∧ Tor (v ,m) ∧

∧
v∈D. DC(v)=AND

Band (v ,m) ∧ Tand (v ,m)

where ~u vector of activation states and times, m mode of the
system, D set of discrepancies.

82/42

TFPG Validation

Encode all executions of the TFPG into a Satisfiability Modulo
Theory (SMT) formula

I Each node only depends on its predecessors

I Separation of Boolean and Temporal part

I Need to capture only 2 semantics: OR and AND nodes

ϕ(~u,m) =
∧

v∈D. DC(v)=OR

Bor (v ,m) ∧ Tor (v ,m) ∧

∧
v∈D. DC(v)=AND

Band (v ,m) ∧ Tand (v ,m)

where ~u vector of activation states and times, m mode of the
system, D set of discrepancies.

82/42

Timed Failure Propagation Graphs

G 1Off

G 2Off

G 1DEAD

G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P,S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P,S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

Captures the causal and temporal relation of off-nominal
conditions

83/42

Timed Failure Propagation Graphs

G 1Off

G 2Off

G 1DEAD

G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P,S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P,S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

Failure modes describe the basic faults

84/42

Timed Failure Propagation Graphs

G 1Off

G 2Off

G 1DEAD

G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P,S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P,S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

Discrepancies describe off-nominal conditions

84/42

Timed Failure Propagation Graphs

G 1Off

G 2Off

G 1DEAD

G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P,S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P,S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

Propagations are indicated with edges:

Time-bounds and
Modes

84/42

Timed Failure Propagation Graphs

G 1Off

G 2Off

G 1DEAD

G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P,S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P,S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

Propagations are indicated with edges: Time-bounds and
Modes

84/42

Timed Failure Propagation Graphs

G 1Off

G 2Off

G 1DEAD

G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P,S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P,S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

Monitors observe a discrepancy.

84/42

Example

G 1Off

G 2Off

G 1DEAD

G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P, S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P, S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

85/42

Example

G 2Off G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P, S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P, S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

t = 0,m = S2

G 1Off G 1DEAD

85/42

Example

G 2Off G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P, S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P, S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

G 1Off G 1DEAD

t = 200,m = S2

G 2Off G 2DEAD B2LOW

Monitor

85/42

Example

G 2Off G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P, S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P, S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

G 1Off G 1DEAD

G 2Off G 2DEAD B2LOW

Monitor

t = 205,m = S2

B2DEAD

85/42

Example

B1LOW B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P, S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P, S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

G 1Off G 1DEAD

G 2Off G 2DEAD B2LOW

Monitor

B2DEAD

t = 206,m = S2

S1NO

S2NO

85/42

Example

B1LOW B1DEAD S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P, S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P, S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

G 1Off G 1DEAD

G 2Off G 2DEAD B2LOW

Monitor

B2DEAD

S1NO

S2NO

t = 207,m = S2

SysDEAD

Monitor

85/42

Example

B1LOW B1DEAD

S1Off

S2Off

SysDEAD

Monitor

Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P, S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P, S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

G 1Off G 1DEAD

G 2Off G 2DEAD B2LOW

Monitor

B2DEAD

S1NO

S2NO

SysDEAD

Monitor

85/42

Semantics

I Active discrepancy: the failure effects reached that node
(permanent effect);

I Active Edge: the starting node is active, and the current
mode is compatible with the edge mode (m ∈ EM(e));

I The activation time t ′ of an OR node must satisfy
e.tmin ≤ t ′ − t ≤ e.tmax , where t is the activation time of its
predecessor;

I The activation time t ′ of an AND node is the composition of
the activation periods for each incoming edge; the tmax can
be violated by all but one of the predecessors;

I Memoryless Edges: if deactivated (due to mode change) the
propagation stops and resets.

86/42

Problem

I Are all (important) executions of the system captured by the
TFPG? Are the models of the system and TFPG aligned?

G 1Off

G 2Off

G 1DEAD

G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P, S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P, S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

I Model-Based Diagnosis: only as good as the model

The TFPG must be validated!

87/42

Problem

I Are all (important) executions of the system captured by the
TFPG? Are the models of the system and TFPG aligned?

G 1Off

G 2Off

G 1DEAD

G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P, S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P, S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

I Model-Based Diagnosis: only as good as the model

The TFPG must be validated!

87/42

Related Work

I Introduced by Vanderbilt University in 2003 (Abdelwahed,
Karsai, and Biswas)

I Used both in hardware, system and software monitoring,
diagnosis, prognosis

I Studied in aerospace setting: Boeing, NASA, ESA

I Validation: Alarm-Sequence Maturation: Data-driven
correction of the TFPG

⇒ Data-driven = The system must already be operational!

88/42

Related Work

I Introduced by Vanderbilt University in 2003 (Abdelwahed,
Karsai, and Biswas)

I Used both in hardware, system and software monitoring,
diagnosis, prognosis

I Studied in aerospace setting: Boeing, NASA, ESA

I Validation: Alarm-Sequence Maturation: Data-driven
correction of the TFPG

⇒ Data-driven = The system must already be operational!

88/42

How do you validate a TFPG?

89/42

Reasoning Tasks

I Necessity, Possibility

I Refinement

I Diagnosability

90/42

Reasoning Tasks

I Necessity, Possibility : Do all (resp. some) executions of the
TFPG satisfy a given condition?

I Refinement

I Diagnosability

90/42

Reasoning Tasks

I Necessity, Possibility : Do all (resp. some) executions of the
TFPG satisfy a given condition?

I Refinement : Given two TFPG, can every execution of one
TFPG be mapped on the other?

I Diagnosability

90/42

Reasoning Tasks

I Necessity, Possibility : Do all (resp. some) executions of the
TFPG satisfy a given condition?

I Refinement : Given two TFPG, can every execution of one
TFPG be mapped on the other?

I Diagnosability : Given a diagnosis condition, is it possible to
detect the occurrence of the condition given the available
monitors?

90/42

Reasoning Tasks

I Necessity, Possibility : Do all (resp. some) executions of the
TFPG satisfy a given condition?

I Refinement : Given two TFPG, can every execution of one
TFPG be mapped on the other?

I Diagnosability : Given a diagnosis condition, is it possible to
detect the occurrence of the condition given the available
monitors?

Frozen Mode Assumption: Mode does not change

90/42

Traces of a TFPG

TFPG as the set of traces satisfying the definition.

X Y
[1, 2]{∗}

X State X Time Y State Y Time

Off – Off –

On 0 On 1

On 1 On 2

· · · · · · · · · · · ·

I Infinite Table

I X State = On, X Time = 0, Y State = Off is not in the table

Goal: Symbolic representation of this Infinite Table.

91/42

Traces of a TFPG

TFPG as the set of traces satisfying the definition.

X Y
[1, 2]{∗}

X State X Time Y State Y Time

Off – Off –

On 0 On 1

On 1 On 2

· · · · · · · · · · · ·

I Infinite Table

I X State = On, X Time = 0, Y State = Off is not in the table

Goal: Symbolic representation of this Infinite Table.

91/42

Traces of a TFPG

TFPG as the set of traces satisfying the definition.

X Y
[1, 2]{∗}

X State X Time Y State Y Time

Off – Off –

On 0 On 1

On 1 On 2

· · · · · · · · · · · ·

I Infinite Table

I X State = On, X Time = 0, Y State = Off is not in the table

Goal: Symbolic representation of this Infinite Table.

91/42

Traces of a TFPG

TFPG as the set of traces satisfying the definition.

X Y
[1, 2]{∗}

X State X Time Y State Y Time

Off – Off –

On 0 On 1

On 1 On 2

· · · · · · · · · · · ·

I Infinite Table

I X State = On, X Time = 0, Y State = Off is not in the table

Goal: Symbolic representation of this Infinite Table.

91/42

Boolean Logic and SAT

Boolean logic represents similar tables:

p q p ∧ q

F F F
F T F
T F F
T T T

p ∧ q represents only the rows in which it is True.

SAT
Given a formula ϕ, the boolean satisfiability problem (SAT) is the
problem of finding a model (i.e., a line in which the formula is
True)

92/42

Boolean Logic and SAT

Boolean logic represents similar tables:

p q p ∧ q

T T T

p ∧ q represents only the rows in which it is True.

SAT
Given a formula ϕ, the boolean satisfiability problem (SAT) is the
problem of finding a model (i.e., a line in which the formula is
True)

92/42

Boolean Logic and SAT

Boolean logic represents similar tables:

p q p ∧ q

T T T

p ∧ q represents only the rows in which it is True.

SAT
Given a formula ϕ, the boolean satisfiability problem (SAT) is the
problem of finding a model (i.e., a line in which the formula is
True)

92/42

Satisfiability Modulo Theory (SMT)

SMT extends from boolean atom to Theory atoms

E.g., Theory of Rational Arithmetic (LA(Q))

ϕ =̇ (x > 2) ∧ (x < 8) ∧ ((x < 1) ∨ (x > 7))

SAT: x =̇ 7.5 (One of the infinitely many models)

φ =̇ (x + y > 2) ∧ (x < 0) ∧ (y < 0)

UNSAT: No model exists

93/42

Satisfiability Modulo Theory (SMT)

SMT extends from boolean atom to Theory atoms

E.g., Theory of Rational Arithmetic (LA(Q))

ϕ =̇ (x > 2) ∧ (x < 8) ∧ ((x < 1) ∨ (x > 7))

SAT: x =̇ 7.5 (One of the infinitely many models)

φ =̇ (x + y > 2) ∧ (x < 0) ∧ (y < 0)

UNSAT: No model exists

93/42

Satisfiability Modulo Theory (SMT)

SMT extends from boolean atom to Theory atoms

E.g., Theory of Rational Arithmetic (LA(Q))

ϕ =̇ (x > 2) ∧ (x < 8) ∧ ((x < 1) ∨ (x > 7))

SAT: x =̇ 7.5 (One of the infinitely many models)

φ =̇ (x + y > 2) ∧ (x < 0) ∧ (y < 0)

UNSAT: No model exists

93/42

Satisfiability Modulo Theory (SMT)

SMT extends from boolean atom to Theory atoms

E.g., Theory of Rational Arithmetic (LA(Q))

ϕ =̇ (x > 2) ∧ (x < 8) ∧ ((x < 1) ∨ (x > 7))

SAT: x =̇ 7.5 (One of the infinitely many models)

φ =̇ (x + y > 2) ∧ (x < 0) ∧ (y < 0)

UNSAT: No model exists

93/42

Satisfiability Modulo Theory (SMT)

SMT extends from boolean atom to Theory atoms

E.g., Theory of Rational Arithmetic (LA(Q))

ϕ =̇ (x > 2) ∧ (x < 8) ∧ ((x < 1) ∨ (x > 7))

SAT: x =̇ 7.5 (One of the infinitely many models)

φ =̇ (x + y > 2) ∧ (x < 0) ∧ (y < 0)

UNSAT: No model exists

93/42

Small Digression

Why SMT ?

94/42

Example Theories in SMT

I Difference logic (DL):
((x = y) ∧ (y − z ≤ 4))→ (x − z ≤ 6)

I Linear arithmetic over the rationals (LA(Q)):
(Tδ → (s1 = s0 + 3.4t − 3.4t0)) ∧ (¬Tδ → (s1 = s0))

I Equality and Uninterpreted Functions (EUF):
((x = y) ∧ (y = f (z)))→ (g(x) = g(f (z)))

I Arrays (AR):
(i = j) ∨ read(write(a, i , e), j) = read(a, j)

I Bit vectors (BV):
x[16][15 : 0] = (y[16][15 : 8] :: z[16][7 : 0]) << w[8][3 : 0]

I Non-Linear arithmetic over the reals (NLA(R)):
((c = ab) ∧ (a1 = a− 1) ∧ (b1 = b + 1))→ (c = a1b1 + 1)

Examples from R. Sebastiani (http://disi.unitn.it/~rseba/DIDATTICA/SAT_BASED14/2_smt_slides.pdf)

95/42

http://disi.unitn.it/~rseba/DIDATTICA/SAT_BASED14/2_smt_slides.pdf

Example Theories in SMT

I Difference logic (DL):
((x = y) ∧ (y − z ≤ 4))→ (x − z ≤ 6)

I Linear arithmetic over the rationals (LA(Q)):
(Tδ → (s1 = s0 + 3.4t − 3.4t0)) ∧ (¬Tδ → (s1 = s0))

I Equality and Uninterpreted Functions (EUF):
((x = y) ∧ (y = f (z)))→ (g(x) = g(f (z)))

I Arrays (AR):
(i = j) ∨ read(write(a, i , e), j) = read(a, j)

I Bit vectors (BV):
x[16][15 : 0] = (y[16][15 : 8] :: z[16][7 : 0]) << w[8][3 : 0]

I Non-Linear arithmetic over the reals (NLA(R)):
((c = ab) ∧ (a1 = a− 1) ∧ (b1 = b + 1))→ (c = a1b1 + 1)

Examples from R. Sebastiani (http://disi.unitn.it/~rseba/DIDATTICA/SAT_BASED14/2_smt_slides.pdf)

95/42

http://disi.unitn.it/~rseba/DIDATTICA/SAT_BASED14/2_smt_slides.pdf

SMT in practice

I Many Applications: Hardware and Software Model Checking,
Automatic test generation, Constraint Programming, Answer
Set Programming, · · ·

I Many Solvers: MathSAT (FBK – Italy), CVC4
(NYU/University of Iowa), Z3 (Microsoft), Yices (SRI),
Boolector (JKU – Austria), · · ·

Beyond the SAT/UNSAT answer

I Model construction

I Proofs of unsatisfiability

I Optimization

I Model enumeration (All-SMT)

96/42

Back to TFPGs

97/42

Encoding

Observations:

I Each node only depends on its predecessors

I Separation of Boolean and Temporal part

I Need to capture only 2 semantics: OR and AND nodes

ϕ(~u,m) =
∧

v∈D. DC(v)=OR

Bor (v ,m) ∧ Tor (v ,m) ∧

∧
v∈D. DC(v)=AND

Band (v ,m) ∧ Tand (v ,m)

where ~u vector of activation states and times, m mode of the
system, D set of discrepancies.

98/42

Encoding

Observations:

I Each node only depends on its predecessors

I Separation of Boolean and Temporal part

I Need to capture only 2 semantics: OR and AND nodes

ϕ(~u,m) =
∧

v∈D. DC(v)=OR

Bor (v ,m) ∧ Tor (v ,m) ∧

∧
v∈D. DC(v)=AND

Band (v ,m) ∧ Tand (v ,m)

where ~u vector of activation states and times, m mode of the
system, D set of discrepancies.

98/42

Example Encoding

X Y
[1, 2]{∗}

ϕ(~u,m) =Bor (Y ,m) ∧ Tor (Y ,m)

Bor (Y ,m) = ~ud(Y)↔ [~ud(X) ∧M((X ,Y),m)]

Tor (Y ,m) = ~ud(Y)→
(
~ud(X) ∧ (~udt(Y)− ~udt(X)) ∈ ET ((X ,Y))

)

99/42

Example Encoding

X Y
[1, 2]{∗}

ϕ(~u,m) =Bor (Y ,m) ∧ Tor (Y ,m)

Bor (Y ,m) = ~ud(Y)↔ [~ud(X) ∧M((X ,Y),m)]

Tor (Y ,m) = ~ud(Y)→
(
~ud(X) ∧ (~udt(Y)− ~udt(X)) ∈ ET ((X ,Y))

)

99/42

Example Encoding

X Y
[1, 2]{∗}

ϕ(~u,m) =Bor (Y ,m) ∧ Tor (Y ,m)

Bor (Y ,m) = ~ud(Y)↔ [~ud(X) ∧M((X ,Y),m)]

Tor (Y ,m) = ~ud(Y)→
(
~ud(X) ∧ (~udt(Y)− ~udt(X)) ∈ ET ((X ,Y))

)

99/42

Example Encoding

X Y
[1, 2]{∗}

ϕ(~u,m) = ~ud(Y)↔ ~ud(X) ∧
~ud(Y)→

(
~ud(X) ∧ (~udt(Y)− ~udt(X)) ∈ [1, 2]

)

99/42

Full Encoding

ϕ(~u,m) =
∧

v∈D. DC(v)=OR

Bor (v ,m) ∧ Tor (v ,m) ∧

∧
v∈D. DC(v)=AND

Band (v ,m) ∧ Tand (v ,m)

Size: O(|E |) RDL atoms

100/42

Full Encoding

ϕ(~u,m) =
∧

v∈D. DC(v)=OR

Bor (v ,m) ∧ Tor (v ,m) ∧

∧
v∈D. DC(v)=AND

Band (v ,m) ∧ Tand (v ,m)

Size: O(|E |) RDL atoms

100/42

Full Encoding

Bor (v ,m) = ~ud(v)↔
∨

(w ,v)∈E

[~ud(w) ∧M((w , v),m)]

Band (v ,m) = ~ud(v)↔
∧

(w ,v)∈E

[~ud(w) ∧M((w , v),m)]

100/42

Full Encoding

Tor (v ,m) = ~ud(v)→ [∨
(w ,v)∈E

(
~ud(w) ∧ (~udt(v)− ~udt(w)) ∈ ET ((w , v))

)
∧

∧
(w ,v)∈E

(
~ud(w)→ (~udt(v)− ~udt(w)) ≤ tmax ((w , v))

)
]

Tand (v ,m) = ~ud(v)→ [∧
(w ,v)∈E

(
~ud(w) ∧ (~udt(v)− ~udt(w)) ≥ tmin((w , v))

)
∧

∨
(w ,v)∈E

(
~ud(v) ∧ (~udt(v)− ~udt(w)) ≤ tmax ((w , v))

)
]

100/42

Necessity and Possibility

G 1Off

G 2Off

G 1DEAD

G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P, S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P, S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

Possibility: Can B2LOW be active?

ϕ(~u,m) ∧ τ(~u,m)

with τ(~u,m) = ~ud(B2LOW) is SAT ?

YES

101/42

Necessity and Possibility

G 1Off

G 2Off

G 1DEAD

G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P, S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P, S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

Possibility: Can B2LOW be active?

ϕ(~u,m) ∧ τ(~u,m)

with τ(~u,m) = ~ud(B2LOW) is SAT ? YES

101/42

Necessity and Possibility

G 1Off

G 2Off

G 1DEAD

G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P, S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P, S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

Possibility: Can B2LOW be active in mode Secondary1?

ϕ(~u,m) ∧ τ(~u,m) ∧m = Secondary1

with τ(~u,m) = ~ud(B2LOW) is SAT?

NO

101/42

Necessity and Possibility

G 1Off

G 2Off

G 1DEAD

G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P, S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P, S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

Possibility: Can B2LOW be active in mode Secondary1?

ϕ(~u,m) ∧ τ(~u,m) ∧m = Secondary1

with τ(~u,m) = ~ud(B2LOW) is SAT? NO

101/42

Necessity and Possibility

G 1Off

G 2Off

G 1DEAD

G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P, S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P, S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

Necessity: For B2LOW to be active, G 2Off must be active.

ϕ(~u,m) ∧ ¬τ(~u,m)

with τ(~u,m) = ~ud(B2LOW)→ ~ud(G 2Off) is UNSAT?

YES

101/42

Necessity and Possibility

G 1Off

G 2Off

G 1DEAD

G 2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P,S1} [5, 10]{P, S1} [1, 1]{P,S1}

[0, 0]{∗}

[0, 1]{∗}

[0, 0]{∗} [0, 100]{P,S2} [5, 10]{P, S2} [1, 1]{P,S2}

[0
, 0

]{∗
}

[0,
1]{∗}

[1, 1]{S
1 }

[1,
1]{S

2
}

Necessity: For B2LOW to be active, G 2Off must be active.

ϕ(~u,m) ∧ ¬τ(~u,m)

with τ(~u,m) = ~ud(B2LOW)→ ~ud(G 2Off) is UNSAT? YES

101/42

Refinement

I After modifying the TFPG, what can we say on the relation
between the original and the new?

I Refinement:

Given two TFPGs G1, G2 and a (partial) mapping γ(~u1, ~u2)
between their nodes, we say that G1 refines G2 if every trace
of G1 can be mapped to a trace of G2

102/42

Refinement

I After modifying the TFPG, what can we say on the relation
between the original and the new?

I Refinement:

Given two TFPGs G1, G2 and a (partial) mapping γ(~u1, ~u2)
between their nodes, we say that G1 refines G2 if every trace
of G1 can be mapped to a trace of G2

102/42

Refinement

I After modifying the TFPG, what can we say on the relation
between the original and the new?

I Refinement:

Given two TFPGs G1, G2 and a (partial) mapping γ(~u1, ~u2)
between their nodes, we say that G1 refines G2 if every trace
of G1 can be mapped to a trace of G2

102/42

Refinement

I After modifying the TFPG, what can we say on the relation
between the original and the new?

I Refinement:

Given two TFPGs G1, G2 and a (partial) mapping γ(~u1, ~u2)
between their nodes, we say that G1 refines G2 if every trace
of G1 can be mapped to a trace of G2

∀~u1,m. ϕG1(~u1,m)→ ∃~u2.(γ(~u1, ~u2) ∧ ϕG2(~u2,m))

102/42

Refinement

I After modifying the TFPG, what can we say on the relation
between the original and the new?

I Refinement:

Given two TFPGs G1, G2 and a (partial) mapping γ(~u1, ~u2)
between their nodes, we say that G1 refines G2 if every trace
of G1 can be mapped to a trace of G2

ϕG1(~u1,m) ∧ ∀~u2.¬(γ(~u1, ~u2) ∧ ϕG2(~u2,m))

102/42

Refinement Example

B1LOW B1DEAD

[5, 10]{P,S1}

103/42

Refinement Example

B1LOW B1DEAD

[5, 10]{P, S1}

B1LOW

B1S

B1P

B1DEAD

[5,
5]{S1}

[10, 10]{P}

[0, 0]{∗}

[0,
0]{∗}

103/42

Diagnosis and Observations

I Monitors tell us when a discrepancy is activated;

I Diagnosis: Infer the state of the system (e.g., other
discrepancies and failure modes) based on the observations
(Monitors).

Partially-Observable TFPG:

ψ(~o, ~u,m) = ϕ(~u,m) ∧∧
v∈D.DS(v)=M

(~od(v) = ~ud(v) ∧ ~odt(v) = ~udt(v))

What if monitors can break? ⇒ Health Variables!

104/42

Diagnosis and Observations

I Monitors tell us when a discrepancy is activated;

I Diagnosis: Infer the state of the system (e.g., other
discrepancies and failure modes) based on the observations
(Monitors).

Partially-Observable TFPG:

ψ(~o, ~u,m) = ϕ(~u,m) ∧∧
v∈D.DS(v)=M

(~od(v) = ~ud(v) ∧ ~odt(v) = ~udt(v))

What if monitors can break?

⇒ Health Variables!

104/42

Diagnosis and Observations

I Monitors tell us when a discrepancy is activated;

I Diagnosis: Infer the state of the system (e.g., other
discrepancies and failure modes) based on the observations
(Monitors).

Partially-Observable TFPG:

ψ(~o, ~u,m, ~h) = ϕ(~u,m) ∧∧
v∈D.DS(v)=M

~h(v)→ (~od(v) = ~ud(v) ∧ ~odt(v) = ~udt(v))

What if monitors can break? ⇒ Health Variables!

104/42

Diagnosability

I Diagnosis condition β(~u)

E.g., β = ~ud(fm) ∧ 5 ≤ ~udt(fm) ≤ 10

E.g., β(~u) = ~ud(D1) ∧ ~ud(D2) ∧ ~udt(D1) ≤ ~udt(D2)

I Diagnosability: Can we always detect β using the monitors?

I Twin-plant construction: Is this UNSAT?

ψ(~o, ~u1,m, ~h1) ∧ ψ(~o, ~u2,m, ~h2) ∧

β(~u1) ∧ ¬β(~u2) ∧ Healthy(~h1, ~h2)

A model for the formula is a critical pair: A pair of
observationally-equivalent traces s.t. one satisfies β but the
other does not.

105/42

Diagnosability

I Diagnosis condition β(~u)

E.g., β = ~ud(fm) ∧ 5 ≤ ~udt(fm) ≤ 10

E.g., β(~u) = ~ud(D1) ∧ ~ud(D2) ∧ ~udt(D1) ≤ ~udt(D2)

I Diagnosability: Can we always detect β using the monitors?

I Twin-plant construction: Is this UNSAT?

ψ(~o, ~u1,m, ~h1) ∧ ψ(~o, ~u2,m, ~h2) ∧

β(~u1) ∧ ¬β(~u2) ∧ Healthy(~h1, ~h2)

A model for the formula is a critical pair: A pair of
observationally-equivalent traces s.t. one satisfies β but the
other does not.

105/42

Diagnosability

I Diagnosis condition β(~u)

E.g., β = ~ud(fm) ∧ 5 ≤ ~udt(fm) ≤ 10

E.g., β(~u) = ~ud(D1) ∧ ~ud(D2) ∧ ~udt(D1) ≤ ~udt(D2)

I Diagnosability: Can we always detect β using the monitors?

I Twin-plant construction: Is this UNSAT?

ψ(~o, ~u1,m, ~h1) ∧ ψ(~o, ~u2,m, ~h2) ∧

β(~u1) ∧ ¬β(~u2) ∧ Healthy(~h1, ~h2)

A model for the formula is a critical pair: A pair of
observationally-equivalent traces s.t. one satisfies β but the
other does not.

105/42

Diagnosability

I Diagnosis condition β(~u)

E.g., β = ~ud(fm) ∧ 5 ≤ ~udt(fm) ≤ 10

E.g., β(~u) = ~ud(D1) ∧ ~ud(D2) ∧ ~udt(D1) ≤ ~udt(D2)

I Diagnosability: Can we always detect β using the monitors?

I Twin-plant construction: Is this UNSAT?

ψ(~o, ~u1,m, ~h1) ∧ ψ(~o, ~u2,m, ~h2) ∧

β(~u1) ∧ ¬β(~u2) ∧ Healthy(~h1, ~h2)

A model for the formula is a critical pair: A pair of
observationally-equivalent traces s.t. one satisfies β but the
other does not.

105/42

Diagnosability

I Diagnosis condition β(~u)

E.g., β = ~ud(fm) ∧ 5 ≤ ~udt(fm) ≤ 10

E.g., β(~u) = ~ud(D1) ∧ ~ud(D2) ∧ ~udt(D1) ≤ ~udt(D2)

I Diagnosability: Can we always detect β using the monitors?

I Twin-plant construction: Is this UNSAT?

ψ(~o, ~u1,m, ~h1) ∧ ψ(~o, ~u2,m, ~h2) ∧

β(~u1) ∧ ¬β(~u2) ∧ Healthy(~h1, ~h2)

A model for the formula is a critical pair: A pair of
observationally-equivalent traces s.t. one satisfies β but the
other does not.

105/42

Diagnosability

I Diagnosis condition β(~u)

E.g., β = ~ud(fm) ∧ 5 ≤ ~udt(fm) ≤ 10

E.g., β(~u) = ~ud(D1) ∧ ~ud(D2) ∧ ~udt(D1) ≤ ~udt(D2)

I Diagnosability: Can we always detect β using the monitors?

I Twin-plant construction: Is this UNSAT?

ψ(~o, ~u1,m, ~h1) ∧ ψ(~o, ~u2,m, ~h2) ∧

β(~u1) ∧ ¬β(~u2) ∧ Healthy(~h1, ~h2)

A model for the formula is a critical pair: A pair of
observationally-equivalent traces s.t. one satisfies β but the
other does not.

105/42

Reasoning Tasks (Revisited)

I Possibility:

SAT: ϕ(~u,m) ∧ τ(~u,m)

I Necessity:

UNSAT: ϕ(~u,m) ∧ ¬τ(~u,m)

I Refinement:

UNSAT:

ϕG1(~u1,m) ∧ ∀~u2.¬(γ(~u1, ~u2) ∧ ϕG2(~u2,m))

I Diagnosability:

UNSAT:

ψ(~o, ~u1,m, ~h1)∧ψ(~o, ~u2,m, ~h2)∧β(~u1)∧¬β(~u2)∧Healthy(~h1, ~h2)

I . . .

106/42

Reasoning Tasks (Revisited)

I Possibility: SAT: ϕ(~u,m) ∧ τ(~u,m)

I Necessity:

UNSAT: ϕ(~u,m) ∧ ¬τ(~u,m)

I Refinement:

UNSAT:

ϕG1(~u1,m) ∧ ∀~u2.¬(γ(~u1, ~u2) ∧ ϕG2(~u2,m))

I Diagnosability:

UNSAT:

ψ(~o, ~u1,m, ~h1)∧ψ(~o, ~u2,m, ~h2)∧β(~u1)∧¬β(~u2)∧Healthy(~h1, ~h2)

I . . .

106/42

Reasoning Tasks (Revisited)

I Possibility: SAT: ϕ(~u,m) ∧ τ(~u,m)

I Necessity: UNSAT: ϕ(~u,m) ∧ ¬τ(~u,m)

I Refinement:

UNSAT:

ϕG1(~u1,m) ∧ ∀~u2.¬(γ(~u1, ~u2) ∧ ϕG2(~u2,m))

I Diagnosability:

UNSAT:

ψ(~o, ~u1,m, ~h1)∧ψ(~o, ~u2,m, ~h2)∧β(~u1)∧¬β(~u2)∧Healthy(~h1, ~h2)

I . . .

106/42

Reasoning Tasks (Revisited)

I Possibility: SAT: ϕ(~u,m) ∧ τ(~u,m)

I Necessity: UNSAT: ϕ(~u,m) ∧ ¬τ(~u,m)

I Refinement: UNSAT:

ϕG1(~u1,m) ∧ ∀~u2.¬(γ(~u1, ~u2) ∧ ϕG2(~u2,m))

I Diagnosability:

UNSAT:

ψ(~o, ~u1,m, ~h1)∧ψ(~o, ~u2,m, ~h2)∧β(~u1)∧¬β(~u2)∧Healthy(~h1, ~h2)

I . . .

106/42

Reasoning Tasks (Revisited)

I Possibility: SAT: ϕ(~u,m) ∧ τ(~u,m)

I Necessity: UNSAT: ϕ(~u,m) ∧ ¬τ(~u,m)

I Refinement: UNSAT:

ϕG1(~u1,m) ∧ ∀~u2.¬(γ(~u1, ~u2) ∧ ϕG2(~u2,m))

I Diagnosability: UNSAT:

ψ(~o, ~u1,m, ~h1)∧ψ(~o, ~u2,m, ~h2)∧β(~u1)∧¬β(~u2)∧Healthy(~h1, ~h2)

I . . .

106/42

Reasoning Tasks (Revisited)

I Possibility: SAT: ϕ(~u,m) ∧ τ(~u,m)

I Necessity: UNSAT: ϕ(~u,m) ∧ ¬τ(~u,m)

I Refinement: UNSAT:

ϕG1(~u1,m) ∧ ∀~u2.¬(γ(~u1, ~u2) ∧ ϕG2(~u2,m))

I Diagnosability: UNSAT:

ψ(~o, ~u1,m, ~h1)∧ψ(~o, ~u2,m, ~h2)∧β(~u1)∧¬β(~u2)∧Healthy(~h1, ~h2)

I . . .

106/42

Experimental Experience

Case-Study (FAME Project) + Random Benchmark

0 500 1000 1500 2000 2500

0
50

10
0

15
0

20
0

25
0

30
0

Number of nodes

R
ef

in
em

en
t t

im
e

(s
ec

)

TO

Refinement
Non−refinement

0 500 1000 1500 2000 2500
0

50
10

0
15

0
20

0
25

0
30

0

Number of nodes

D
ia

gn
os

ab
ili

ty
 ti

m
e

(s
ec

)

TO

Easily handle more than 2000 nodes

107/42

Future

I More case-studies

I Integration with other tools (E.g., user-friendly interface)

I Synthesis from models

I Automata-based techniques to remove frozen mode
assumption (Preliminary work using NuSMV)

I Framework to explore the design space: parameter synthesis

108/42

Summary

I TFPG describe temporal and causal relation of off-nominal
conditions in a system;

I Validation is important but was mainly unexplored;

I Possible executions of the TFPG as an SMT formula;

I Uniform encoding for multiple types of reasoning tasks:
Necessity, Possibility, Refinement, Diagnosability and
more ...

I Experimental evaluation shows applicability of the approach
for examples of considerable size.

109/42

References I

J. Ezekiel, A. Lomuscio, L. Molnar, and S.M. Veres.
Verifying Fault Tolerance and Self-Diagnosability of an
Autonomous Underwater Vehicle.
In IJCAI, pages 1659–1664, 2011.

Xiaowei Huang.
Diagnosability in concurrent probabilistic systems.
In Proceedings of the 2013 International Conference on
Autonomous Agents and Multi-agent Systems, 2013.

Shengbing Jiang and Ratnesh Kumar.
Failure diagnosis of discrete event systems with linear-time
temporal logic fault specifications.
In IEEE Transactions on Automatic Control, pages 128–133,
2001.

110/42

References II

M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen,
and D. C. Teneketzis.
Failure diagnosis using discrete-event models.
4(2):105–124, 1996.

Anika Schumann.
Diagnosis of discrete-event systems using binary decision
diagrams.
Workshop on Principles of Diagnosis (DX’04), pages 197–202,
2004.

111/42

	Appendix

