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Abstract

Autonomous systems must be able to detect and promptly react to faults.

Fault Detection and Identification components (FDI) are in charge of de-

tecting the occurrence of faults. The FDI depends on the concrete design

of the system, needs to take into account how faults might interact, and

can only have a partial view of the run-time state through sensors. For

these reasons, the development of the FDI and certification of its correct-

ness and quality are difficult tasks. This difficulty is compounded by the

fact that current approaches for verification of the FDI rely on manual

inspection and testing.

Motivated by industrial case-studies from the European Space Agency,

this thesis proposes a formal foundation for FDI design that covers spec-

ification, validation, verification, and synthesis. The Alarm Specification

Language (ASLK) is introduced in order to formally capture a set of inter-

esting and desirable properties of the FDI components. ASLK is equipped

with a semantics based on Temporal Epistemic Logic, thus enabling rea-

soning about partially observable systems. Automated reasoning techniques

can then be applied to perform validation, verification, and synthesis of the

FDI. This formal process guarantees that the generated FDI satisfies the

designer expectations.

The problems deriving from this process were out of reach for exist-

ing model-checking techniques. Therefore, we develop novel and efficient

techniques for model-checking temporal epistemic logic over infinite state

systems.
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Design, Model Checking, Diagnosis]
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Chapter 1

Introduction

Autonomous systems, such as satellites, space rovers, and self-driving cars,

need to be able to react quickly to unexpected events such as faults. In

the case of spacecrafts, this need is compounded by the difficulty (or im-

possibility) of directly accessing the system to repair it. A wide range of

techniques have been developed to address this issue, among which Fault

Detection Identification and Recovery (FDIR) is a common example in the

aerospace setting. The goal of the FDIR is to autonomously detect (FDI)

and recover (FR) from faults of the system in a timely manner.

The design of FDIR in aerospace is a very complex task, as it needs to

consider the interaction between heterogeneous components, implemented

either in hardware or in software, and take into account their interactions

also in presence of multiple faults. Additionally, the interaction of these

components might be regulated by mission- or safety-critical requirements

that also need to be taken into account.

By definition, the FDIR comes into play during critical phases of the sys-

tem life, and might be the last resort for preserving the spacecraft. For this

reason, it is paramount to verify the correctness and completeness of the

FDIR. This need, however, clashes with the current industrial practices,

where FDIR development is mostly considered as an additional activity

1



CHAPTER 1. INTRODUCTION

rather than a core architectural concept. This causes several problems,

such as a lack of standardization and dedicated tools. In turn, this leads

to limited reuse of existing designs, ad-hoc handling of special cases, and

overly complex or overly simplified FDIR designs. Since changes to de-

tails of the system design can have drastic impacts on the FDIR strategy,

the FDIR is currently developed late in the system development life-cycle.

These facts make the certification of the FDIR quality a daunting task

and, in some cases, they can lead to increases in cost and delays in the

spacecraft development.

In different areas of engineering, there has been a shift towards model-

based techniques [130]. By having an artifact capture explicit characteristic

of the system, it is possible to highlight key aspects in the design and

avoid ambiguity when collaborating with other people. Moreover, models

can be equipped with semantics and used for automated analysis such as

simulation.

Formal methods are a family of techniques that can help reasoning about

complex situations by providing a formal, i.e., mathematically grounded,

characterization of the problem. In particular, model checking is an active

area of research in which the model of the system is equipped with a

formal semantics and properties can be verified against it. Model checking

provides an exhaustive analysis of the system behavior. Therefore, if the

property is shown to be satisfied by the model, it means that there is no

possible execution of the model that can violate it. This is different from

other techniques such as testing, where not finding a counter-example does

not prove that no counter-example exists. An important assumption of

model-based techniques is that the model is a faithful representation of

the system. This makes it extremely important to be able to validate the

model of the system, before performing other analysis. If the model is

a formal model, we can apply several automated reasoning techniques to

2
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increase our confidence in the model.

In this thesis, we propose the use of formal model-based techniques

to support early FDI design and verification. Motivated by ESA-funded

industrial projects, we develop the theory and tools to support the spec-

ification, validation, verification, design and synthesis of FDI. In order to

properly capture the specification of FDI requirements, we show that log-

ics that can reason about partial-observability are needed. For this reason,

our approach is built on top of Temporal Epistemic Logic (TEL). TEL is

commonly used in the context of multi-agent systems, in order to reason

about interacting agents. We show that this logic is particular suitable for

reasoning about the problem of the FDI. Moreover, we show how many

important information (such as which sensors can be observed, and how

many observations can be used for reasoning) can be embedded in the se-

mantics of the logic, thus obtaining a unified logical characterization of

the problem. In order to tackle the complex model-checking problems aris-

ing from the application of our approach, we develop novel and efficient

techniques for model-checking TEL over infinite state systems.

1.1 Contributions

To improve the FDIR design process, we need to define a way to specify,

validate and verify both our requirements, and all the models used in the

process. Moreover, the goal of improving formal model-based FDIR design

cannot be achieved without effective tools to perform automated reasoning.

For this reason, the contributions of this thesis span across two domains:

FDI design and temporal epistemic logic model-checking. The following

are the contributions of the thesis.

1. Formally characterize several key aspects of FDI, and consolidate

the specification by introducing the Alarm Specification Language

3



CHAPTER 1. INTRODUCTION

(ASLK). ASLK is equipped with a semantics based on temporal epis-

temic logic, that accounts for different types of recall and enables

automated reasoning (e.g., model-checking)

2. Develop algorithms for the synthesis of FDI components that satisfy

an ASLK specification by construction; [34]

3. Extend a classical approach for diagnosability (i.e., the twin-plant

approach) in order to deal with different types of ASLK specifications.

4. Develop an algorithm for optimizing the selection of sensors to be used

by the FDI according to multiple cost-function (Pareto optimal sensor

placement); [23]

5. Introduce techniques for the validation of Timed Failure Propagation

Graphs based on Satisfiability Modulo Theory (SMT) engines; [31]

6. Describe the application of the techniques presented in this thesis,

within the two ESA-funded projects AUTOGEF and FAME. [25]

7. Develop the first approach for model-checking of a particular type of

TEL (KL1 with observational semantics) over infinite state transition

systems, that is also extremely effective on finite state systems. [49]

1.2 Thesis Structure

The rest of the thesis is structured as follows. Chapter 2 provides some

technical background that is shared across multiple Chapters. Chapter 3

provides an overview of the state of the art in both the fields of diagnosis,

FDI design and temporal epistemic logic reasoning.

Chapters 4 to 8 develop the main technical part concerning FDI de-

sign, including: specification, validation, verification, and synthesis. In

particular:
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• Chapter 4 describes the setting of this work, e.g., what the plant and

the FDIR are, and how they are connected. Moreover, it introduces

the running example of the Battery Sensor System.

• Chapter 5 formally defines several key concepts for the specification

of the FDI, such as completeness, correctness, maximality and trace

diagnosability.

• Chapter 6 introduces the Alarm Specification Language (ASLK), its

temporal epistemic grounding, and examples of its application.

• Chapter 7 discusses the twin-plant approach to diagnosability, how to

apply it to ASLK specifications, and how to exploit it to optimize the

amount of sensors in a system.

• Chapter 8 presents two algorithms for the synthesis of FDI compo-

nents. These algorithms are characterized by the amount of recall of

the FDI.

Chapter 9 discusses the use of Timed Failure Propagation Graphs to

model the propagation of failures in a system, and discusses SMT-based

techniques for their validation.

Chapter 10 describes the application of the techniques described in this

thesis within two ESA-funded projects: AUTOGEF and FAME.

The techniques for performing TEL model-checking are introduced in

Chapter 11. In particular, we introduce two algorithms (eager and lazy)

for model-checking TEL over both finite and infinite state systems. The

effectiveness of the approaches is demonstrated through an extensive ex-

perimental evaluation.

Chapter 12 concludes the thesis by providing an outlook on future work.
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Chapter 2

Technical Background

We use the standard notions of first-order logic for theory, satisfiability,

validity, unsatisfiability, and logical consequence [106]. We refer to 0-arity

predicates as Boolean variables, and to 0-arity uninterpreted functions as

theory variables. Given a finite set of variables V and a (potentially infinite)

domain U of values, an assignment to V is a mapping from the set V to

the set U . We use Σ(V ) to denote the set of assignments to V . Given an

assignment s ∈ Σ(V ) and V1 ⊆ V , we use s|V1 to denote the projection of

s over V1. We use F(V ) to denote the set of propositional formulas over

V . If V1, . . . , Vn are a sets of variables and ϕ is a formula, we might write

ϕ(V1, . . . , Vn) to indicate that all the variables occurring in ϕ are elements

of
⋃n
i=1 Vi. Given a theory T , we write ϕ |=T ψ (or simply ϕ |= ψ) to

denote that the formula ψ is a logical consequence of ϕ in the theory T .

2.1 Satisfiability Modulo Theory

Given a first-order formula ψ with non-logical symbols interpreted in a

decidable background theory T , Satisfiability Modulo Theory (SMT) [12]

is the problem of deciding whether there exists a satisfying assignment

to the free variables in ψ. SMT extends the Satisfiability problem (SAT)

with theories, e.g., arithmetic theories. This provides a simple and intu-

7



CHAPTER 2. TECHNICAL BACKGROUND

itive way to encode several types of problems, that require more than just

propositional logic, for example, formal verification [20] and temporal rea-

soning [54]. The existence of effective solvers such as MathSAT [53], Z3 [66]

and CVC4 [11] (to name a few) make SMT a practical approach. An ex-

ample of the theories that we use is the theory of linear arithmetic over

the rational numbers (LRA). A formula in LRA is an arbitrary Boolean

combination, a universal (∀) or an existential (∃) quantification, of atoms

in the form
∑

i aixi ./ c where ./∈ {>,<,≤,≥, 6=,=}, each xi is a real

variable, each ai and c are real constants.

2.2 Labeled Transition System

To model reactive systems (such as the plant and the FDIR), we use a sym-

bolic representation of Labeled Transition Systems (LTS). Control locations

and data are represented by variables, sets of states and transitions are rep-

resented by formulas, and transitions are labeled with explicit events. For

each variable x, we assume that there exists a corresponding variable x′

(the primed version of x). If V is a set of variables, V ′ is the set obtained

by replacing each element x with its primed version (V ′ = {x′ | x ∈ V }).
Given an assignment s to variables in V , we denote with s′ the assignment

to the variables V ′ such that s′(v′) = s(v) for every v ∈ V . Given a formula

ϕ, ϕ′ is the formula obtained by adding a prime to each variable occurring

in ϕ.

Definition 1 (LTS). A Labeled Transition System is a tuple S = 〈V,E, I, T 〉,
where:

• V is a finite set of state variables;

• E is a set of events;

• I ∈ F(V ) is a quantifier-free formula over V defining the initial states;

8
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• T : E → F(V ∪ V ′) maps an event e ∈ E to a quantifier-free formula

over V and V ′ defining the transition relation for e (with V ′ being the

next version of the state variables).

A state s is an assignment to the state variables V (i.e., s ∈ Σ(V )). We

denote by s′ the corresponding assignment to V ′. A transition labeled with

e is a pair of states 〈s, s′〉 such that 〈s, s′〉 |= T (e). A [finite] trace of S is

an infinite [resp. finite] sequence σ = s0, e0, s1, e1, s2, . . . alternating states

and event such that s0 satisfies I and, for each k ≥ 0, 〈sk, sk+1〉 satisfies

T (ek). Note that we consider infinite traces only, and w.l.o.g. we assume

the system to be dead-lock free, and call Σ(S) the set of all traces of S.

Given σ = s0, e0, s1, e1, s2, . . . and an integer k ≥ 0, we denote by σk the

finite prefix s0, e0, . . . , sk of σ containing the first k + 1 states. We denote

by σ[k] the k + 1-th state sk. A state s is reachable in S iff there exists a

trace σ of S such that s = σ[k] for some k ≥ 0.

Definition 2 (Deterministic LTS). S is deterministic iff:

(i) there is one initial state (i.e., there exists a state s such that s |= I

and, for all t, if t |= I, then s = t);

(ii) for every reachable state s, for every event e, there is one successor

(i.e., there exists s′ such that 〈s, s′〉 |= T (e) and, for all t′, if 〈s, t′〉 |=
T (e), then s′ = t′).

We say that S is a finite transition system if the set of events E is a

finite set, and all domains of the variables in V are finite; otherwise, we

say that S is an infinite transition system. The infinite characterization

of these systems is given by the infinite domain of the variables, i.e., in

each state we have a finite number of variables that can potentially have

an infinite domain. For example, we can have integer or rational values,

and use the theory of arithmetic [73] to define the transition relation.

9
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Definition 3 (Synchronous Product). Let

S1 = 〈V 1, E1, I1, T 1〉 and S2 = 〈V 2, E2, I2, T 2〉

be two transition systems with E1 = E2 = E and V 1 ∩ V 2 = ∅. We define

the synchronous product S1×S2 as the transition system 〈V 1 ∪ V 2, E, I1 ∧ I2, T 〉
where, for every e ∈ E, T (e) = T 1(e) ∧ T 2(e). Every state s of S1 × S2

can be considered as the product s1 × s2 such that s1 = s|V 1 is a state of

S1 and s2 = s|V 2 is a state of S2. Similarly, every trace σ of S1 × S2 can

be considered as the product σ1 × σ2 where σ1 is a trace of S1 and σ2 is a

trace of S2.

Definition 4 (Asynchronous Product). Let

S1 = 〈V 1, E1, I1, T 1〉 and S2 = 〈V 2, E2, I2, T 2〉

be two transition systems, such that V 1 ∩ V 2 = ∅. We define the asyn-

chronous product S1⊗S2 as the transition system 〈V 1 ∪ V 2, E1 ∪ E2, I1 ∧ I2, T 〉
where:

• for every e ∈ E1 \ E2, T (e) = T 1(e) ∧ frame(V 2).

• for every e ∈ E2 \ E1, T (e) = T 2(e) ∧ frame(V 1).

• for every e ∈ E1 ∩ E2, T (e) = T 1(e) ∧ T 2(e).

where frame(X) stands for
∧
x∈X x

′ = x and is used to represent the fact

that while one transition system moves on a local event, the other transition

system does not change its local state variables.

Every state s of S1 ⊗ S2 can be considered as the product s1 ⊗ s2 such

that s1 = s|V 1 is a state of S1 and s2 = s|V 2 is a state of S2. If either

S1 or S2 is deterministic, then every trace σ of S1 ⊗ S2 can be considered

as the product σ1 ⊗ σ2 where σ1 is a trace of S1 and σ2 is a trace of

S2. In general, the product of two traces produces a set of traces due to
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different possible interleaving of the local events. In general, composing two

systems can reduce the behaviors of each system and introduce deadlocks.

For example, one system can reach a state where it can only perform the

event e, but the other system is never ready to synchronize on e. However,

given two systems (e.g., the diagnoser and the plant), if one of the systems

is deterministic (the diagnoser) then it cannot alter the behavior of the

second (the plant).

Notice that the synchronous product coincides with the asynchronous

case when the two sets of events coincide. Sometimes we are interested

in the synchronous behavior of systems, without the need of considering

multiple possible events. If the set of events is a singleton (e.g., E =

{tick}), we call the system a Transition System (TS), and omit the set of

events: S = 〈V, I, T 〉. The general definition of LTS is more general, and

can capture both types of systems.

2.3 Linear Temporal Logic

A formula in Linear Temporal Logic extended with past operators [133,

112, 114] (or simply LTL), is defined over variables V and events E as:

β ::= p | e | β ∧ β | ¬β |

Oβ | Hβ | Y β | βSβ |

Fβ | Gβ | Xβ | βUβ

where p is a predicate over F(V ) and e ∈ E. Intuitively, p are the propo-

sitions over the state of the LTS, while e represents an event.

Given a trace σ = s0, e0, s1, e1, s2, . . ., the semantics of LTL is defined

as follows:

- (σ, n) |= p iff sn |= p

11
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- (σ, n) |= e iff en = e

- (σ, n) |= β1 ∧ β2 iff (σ, n) |= β1 and (σ, n) |= β2

- (σ, n) |= ¬β iff (σ, n) 6|= β

- Once: (σ, n) |= Oβ iff ∃j ≤ n. (σ, j) |= β

- Historically: (σ, n) |= Hβ iff ∀j ≤ n. (σ, j) |= β

- Yesterday: (σ, n) |= Y β iff n > 0 and (σ, n− 1) |= β

- Since: (σ, n) |= β1Sβ2 iff there exists j ≤ n such that (σ, j) |= β2 and

for all k, j < k ≤ i, (σ, k) |= β1

- Finally: (σ, n) |= Fβ iff ∃j ≥ n. (σ, j) |= β

- Globally: (σ, n) |= Gβ iff ∀j ≥ n. (σ, j) |= β

- Next: (σ, n) |= Xβ iff (σ, n+ 1) |= β

- Until: (σ, n) |= β1Uβ2 iff there exists j ≥ n such that (σ, j) |= β2 and

for all k, n ≤ k < j, (σ, k) |= β1.

Given an LTS S, and an LTL formula β, S satisfies β (S |= β) iff for

every trace σ of S, (σ, 0) |= β.

Notice that Y β is always false in the initial state, and that we use

a reflexive semantics for the operators U , F , G, S and O. We use the

following abbreviations:

• Xnβ
∆
= XXn−1β (with X0β = β);

• Y nβ
∆
= Y Y n−1β (with Y 0β = β);

• O≤nβ ∆
= β ∨ Y β ∨ · · · ∨ Y nβ;

• F≤nβ ∆
= β ∨Xβ ∨ · · · ∨Xnβ.

12
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2.4 Temporal Epistemic Logic

Epistemic logic has been used to describe and reason about knowledge of

agents and processes. There are several ways of extending epistemic logic

with temporal operators. In this thesis, we consider the linear time exten-

sion KL [93] that combines the epistemic operator K with LTL (including

past operators). A KL formula has the following syntax:

β ::= p | e | β ∧ β | ¬β |

Oβ | Hβ | Y β | βSβ |

Fβ | Gβ | Xβ | βUβ |

Kiβ

where i is one of the (finitely many) agents that can observe the system

(e.g., diagnosers). The intuitive semantics of Kiβ is that the agent knows

that β holds in a state of a trace σ, by using only the observable infor-

mation. Each modal operator Ki is associated with an indistinguishability

relation ∼i⊆ (Σ(S)×N)×(Σ(S)×N) that defines when two pointed traces

are indistinguishable from each other. Intuitively, given two traces σA, σB

and two points on them nA, nB, we say that we cannot distinguish (σA, nA)

from (σA, nB) iff ((σA, nA), (σA, nB)) ∈∼i. This means that Kiβ holds iff

β holds in all situations that are indistinguishable (e.g., observationally

equivalent). This abstraction allows us to reason about the knowledge of

an agent that has limited information on the system execution. In Sec-

tion 5.3, we will explain how to build this relation to account for the type

of recall of the agent.

While in LTL the interpretation of a formula is local to a single trace,

in KL the semantics of the Ki operator quantifies over the set of indistin-

guishable traces. The semantics of KL is defined recursively on pointed

traces and indistinguishability relations, and it mostly extends the seman-
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tics of LTL. Given a trace σ = s0, e0, s1, e1, s2, . . . of S, and n ≥ 0 we have

that:

- (S, σ, n) |= p iff sn |= p

- (S, σ, n) |= e iff ei = e

- (S, σ, n) |= β1 ∧ β2 iff (S, σ, i) |= β1 and (S, σ, n) |= β2

- (S, σ, n) |= ¬β iff (S, σ, n) 6|= β

- (S, σ, n) |= Oβ iff ∃j ≤ n. (S, σ, j) |= β

- (S, σ, n) |= Hβ iff ∀j ≤ n. (S, σ, j) |= β

- (S, σ, n) |= Y β iff n > 0 and (S, σ, n− 1) |= β

- (S, σ, n) |= β1Sβ2 iff there exists j ≤ i such that (S, σ, j) |= β2 and for

all k, j < k ≤ i, (S, σ, k) |= β1

- (S, σ, n) |= Fβ iff ∃j ≥ n. (S, σ, j) |= β

- (S, σ, n) |= Gβ iff ∀j ≥ n. (S, σ, j) |= β

- (S, σ, n) |= Xβ iff σ, n+ 1 |= β

- (S, σ, n) |= β1Uβ2 iff there exists j ≥ n such that (S, σ, j) |= β2 and

for all k, i ≤ k < j, σ, k |= β1.

- (S, σ, n) |= Kiβ iff for all traces σ′ of S and integers m ≥ 0 s.t.

(σ, n) ∼i (σ′,m) it holds that (S, σ′,m) |= β.

To keep the notation lighter (and more in line with the one used for LTL)

we usually omit the system S and write (σ, n) instead of (S, σ, n) when the

system is clear from the context. A system S satisfies a formula β (S |= β)

if for every trace σ of S (S, σ, 0) |= β.
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From KL we derive several syntactic fragments. In particular, we call

KLn the fragment of KL in which at most n nesting of epistemic operators

Ki occur. Using this definition, we can see that KL0 is LTL. The restric-

tion applies only to nesting, while we consider the possibility of multiple

agents interacting. In this thesis, we are mostly interested in KL1 since, as

we will show in Chapter 6, it allows us to encode all interesting properties

of alarms.

2.5 Parameter Synthesis

In model-checking we are interested in knowing if a given property is satis-

fied in a given system. In some cases, we are interested in knowing whether

a family of systems satisfy a property. In particular, we are interested in

knowing what changes we can make to a system in order to satisfy the

property. To achieve this, we introduce parameters that guide the behav-

ior of the system. We then ask the model-checker to provide us with all

values for the parameters such that the property is satisfied.

Let S = 〈V,E, I, T 〉, be an LTS, and U a set of parameters. The

parametric LTS Q is defined as Q = (V,E, U, IU , TU), where I ∈ F(U ∪V )

is the initial condition, and T : E → F(U∪V ∪V ′) is the transition relation.

Parameters do not change over time, and can assume any domain that a

variable can assume. Parameters have an impact on both which states

can be considered initial, and on which transitions are possible within the

system. In fact, given a valuation for the parameters (γ ∈ Σ(U)), and

a formula ψ we denote by γ(ψ) the formula obtained by substituting in

ψ every occurrence of u with γ(u) for every parameter u in U . Given

a parametric transition system Q and a valuation for the parameters γ,

we can compute the induced LTS by replacing the parameters with their

valuation: Qγ = (V,E, γ(IU), γ(TU)).
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Definition 5 (Parameter Synthesis Problem). Given a parametric system

Q and a property ϕ, the parameter synthesis problem is the problem of

finding the set of all valuations ValidParsQ,ϕ s.t. the induced LTS satisfies

ϕ: i.e.,

ValidParsQ,ϕ(U)
∆
= {γ ∈ Σ(U) | Qγ |= ϕ}

Definition 5 is independent from the type of the property ϕ, and we will

consider both invariant properties (i.e., propositional formulas that must

hold in any state of a trace) and LTL properties. Moreover, we do not

make assumptions on Q, and thus we work with both to finite state and

to infinite state systems. Since model-checking for infinite state systems

is undecidable, the parameter synthesis problem is also undecidable. In

practice, however, we are usually able to solve it when the number of

parameters is limited. In this work, we rely on off-the-shelf tools for LTL

model-checking and parameter synthesis for infinite-state systems [47].
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Chapter 3

State of the Art

This thesis tries to bridge two different areas of research: FDI design,

and temporal epistemic logic. Both domains have been obect of extensive

research. In order to clarify the positioning of this thesis, this chapter

provides an overview of both fields.

In Section 3.1, we discuss the relation between diagnosis and FDI, and

we overview several key aspects and works related to diagnosis of reactive

systems. This leads us to the discussion of challenges and issues related to

FDI design.

In Section 3.2, we provide an overview of the techniques and results

obtained in the field of temporal epistemic logic model-checking.

3.1 Diagnosis and FDI

FDI design is strongly connected to the field of diagnosis. In fact, in both

areas we are interested in understanding why a system is misbehaving.

Over the last 30 years, the field of diagnosis has expanded in order to

address different challenges and assumptions. The goal of this section is

to clarify the relation between FDI and diagnosis, and thus the position of

this thesis within the state of the art.

There are at least three main approaches for performing diagnosis (that
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are not necessarily mutually exclusive): rule-based, data-driven, and model-

based.

Rule-based approaches provide a simplified description of the diagnoser

behavior that hard codes the relation between observations and causes.

This information is encoded within rules that are manually developed by

systems experts. These techniques come from the tradition of expert sys-

tems [155]. A rule is expressed as a condition and effect. Sets of rules

constitute a knowledge-base. The observations coming from the system

are fed to the knowledge base to see whether they imply the occurrence of

a fault either directly or through a chain of rules.

Rule-based systems are hard to maintain, since the relation between ob-

servable behavior of the system and faults is captured explicitly, (typically)

without the use of a model of the system. This requires a deep knowledge

of the system, and it is not robust w.r.t. the introduction of new faults or

changes in the sensors sets. Nevertheless, these systems are particularly

useful in those contexts where external knowledge is available (e.g., human

knowledge) that we want to capture and formalize in the diagnostic en-

gine. This can be done without the need of modeling the whole system,

that might be complex or partially unknown (e.g., biological systems).

Data-driven approaches rely on available historical data in order to char-

acterize and learn nominal behaviors from off-nominal ones. Examples

include pattern recognition [125] and machine learning techniques [119].

These techniques work without a model, or with just a simplified one.

This makes it possible to easily adjust them to changes in the system,

or even adapt them to different systems. The main drawback of these

techniques is the need of data for training. Data from the systems is not

available until they have been built. Only during the testing phase of

the physical system, it is possible to collect useful data. This, however,

drastically shortens the time available for the tuning of the diagnoser, and
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makes it extremely difficult to validate the diagnoser when designing the

system.

In Model-based approaches, the model captures the behavior of the sys-

tem. Whenever the observations are not consistent with the model, we try

to find a justification. In this thesis, we focus on model-based techniques.

The reasons are many-fold. First, in different engineering areas, the use

of models has become prominent, in order to better capture and formalize

the expectations and assumptions on the system. Indeed, Model Based

Engineering is becoming a more widely accepted practice, and it is even

dictated by standards [130] for the development of avionics systems. Sec-

ond, there is a significant amount of literature on model-based diagnosis.

Finally, by using a formal model of the system we can apply formal meth-

ods techniques to deduce and prove properties of the system. It is worth

noticing, however, that not all model-based techniques require a formal

model to work. UML diagrams are a typical example of models without

an official formal semantics.

There are two main limitations to model-based approaches. First, the

system might be complex, the design might change, or it might be difficult

to get details on the implementation of certain parts of the system. This

represents a difficulty in generating the actual model, and keep it up-to-

date during the iterations of the system design. This point will be mitigated

by the availability of models in the model-based engineering process, and

by the development of effective translations. Second, modeling big systems

usually requires performing some sort of abstraction in order to keep the

model reasonable in size. Choosing the right level of abstraction is often

difficult. Using the wrong level of abstraction can lead to systems that

cannot be analyzed or that are too simple.
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3.1.1 Model-Based Diagnosis

The Model-Based Diagnosis (MBD) approach was introduced by Reiter [134].

In MBD the system model is defined as description of the components be-

havior. Observations are run against the model, and if they are inconsis-

tent, it means that some component is behaving incorrectly. The goal of

MBD is to find the set of constraints that are in conflict with the observa-

tion. In this way, a diagnosis is a set of components that must misbehave

in order to justify the observation. The number of diagnosis suffers from a

combinatorial explosion. Therefore, Reiter also proposes an algorithm to

perform minimal diagnosis. A diagnosis is minimal if any subset of it is not

a diagnosis. Upon this idea, several approaches and techniques have been

developed, in order to improve the performances both at the algorithmic

and implementation level.

To categorized the different model-based techniques, we consider the

following aspects:

• Temporal Evolution

• Faults Modeling

• Output of the Diagnoser

• Resources available to the Diagnoser

Temporal Evolution MBD originated in the combinational domain of cir-

cuit design. Extensions of MBD to sequential system have been proposed,

and [45] provides an overview of the different aspects considered in the lit-

erature. In particular, the sequential nature of the problem has an impact

on the behavior of faults that are not only permanent anymore but can

have transient dynamics (i.e., appear and disappear).
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The most common framework for extending MBD to sequential system

is the one developed by Sampath [137] on top of Discrete Event Systems

(DES). This approach has been widely adopted, helped by the fact that

DES are commonly used outside of the diagnosis community.

Other techniques to deal with timed behavior include chronicles [113],

Timed Failure Propagation Graphs [4], and timed automata [151]. In all

these cases, the time is not considered discrete, but continuous.

Faults Modeling Faults effects are difficult to capture within models. Things

can break in many unexpected ways. Therefore, in the literature we find

two possible ways to model faults: strong and weak model [64]. A strong

model describes exactly how the fault affects the system. For example, a

stuck at closed fault in a valve, means that the valve will stay closed no

matter what commands is given to it. Weak fault models, instead, originate

from the abductive reasoning domain, and simply indicate that a compo-

nent is violating one of its constraints [146, 139, 38]. Weak faults models

are simpler to introduce, at the expense of less informative diagnosis.

Another aspect to consider in fault modeling is their dynamics and oc-

currence. The dynamics tells us whether a fault is permanent or transient.

For transient faults, there might be additional constraints on how long they

can last, and how often they can repeat. In most cases, we consider the

occurrence of a fault as a non-deterministic event. Nevertheless, in safety

critical domains, information concerning the reliability of the components

is usually available. Therefore, we might want to attach a probability to

the occurrence of a fault. This is considered in many MBD approaches, in

which the probabilities are used to prioritize the diagnosis. An example of

probabilistic fault modeling is provided within the COMPASS [36] toolset.

21



CHAPTER 3. STATE OF THE ART

Output of the Diagnosis An important aspect of the FDIR module is that

its complexity is limited by the number of available reconfiguration ac-

tions [17]. FDIR is not meant to perform deep state inspection, as sug-

gested by MBD approaches, since this is left to the ground control (using

telemetry data). Thus, the FDIR module only checks whether reconfigu-

ration actions should be applied. For FDI we are interested in providing

enough information to the FR in order to apply the correct recovery action.

This provides us with a more restrictive set of outputs for the FDI com-

ponent, that we call alarms. For this reason, the FDI and the Diagnoser

output different information.

The classical definition of diagnosis in the MBD approaches [134] is one

(or more) sets of components whose malfunction can justify the discrepancy

in the observation. The richer the explanation of the problem, the fastest

the problem can be identified and solved [10].

Since the diagnoser provides a rich set of information, it becomes harder

to judge the quality of the diagnoser. In fact, multiple empirical metrics

have been defined [83, 82] to assess the quality of the diagnoser. This

contrasts our goal of formally certifying the quality of the FDI at design

time.

We will focus on answers that are qualitative: either the fault has oc-

curred, or it has not. However, this black and white view, might not always

be desirable. For this reason, several works try to adopt a quantitative view

of the problem, by assessing the likelihood of a diagnosis to be correct. This

is typical, for example, of Bayesian techniques [142].

Resources for Diagnosis If the diagnoser does not have timing or compu-

tational constraints, then it can use more complex algorithms to compute

a diagnosis. This is usually the situation during maintenance, or when

the ground stations use telemetry. Since ground has more computational
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power, it can run multiple complex algorithms at the same time. However,

this introduces delays in the reaction to faults and depends also on the

possibility of communicating with the spacecraft. In the context of FDI,

instead, a short reaction time might make the difference between saving or

losing the spacecraft.

One approach to avoid complex algorithms on-board, is to perform part

of the reasoning at design time, and use pre-compiled information on-board.

Compilation of diagnosis has been studied by using both BDDs [150, 140]

and Decomposable Negation Normal Form (DNNF) [97]. These compi-

lation approaches are exact, in the sense that all relevant information is

considered, and the resulting artifact (BDD or DNNF) is correct by con-

struction. The drawback, however, is that the compiled artifact is consid-

erably big, and cannot be generated for models of significant size.

In order to limit the size of the monitors, in industrial use-cases, the

type of monitors is simplified, by only using thresholds of values and simple

counters. There is no assurance on the quality of the monitors, and they

need to be separately validated and verified. However, in this approach,

the complexity of the monitors is independent from the complexity of the

overall system, and thus can be applied in complex designs.

Finally, the diagnoser might be able to use another type of resource:

probes. The usual distinction is between passive and active diagnosis.

Passive diagnosis consists in performing the diagnosis of the system without

affecting its behavior. This is in contrast with active diagnosis, in which

probes can be used to stimulate parts of the system [65].

Passive diagnosis has more limited information to act upon and there-

fore, with the same observation, it might generate many more diagnosis

than an active diagnoser. Intuitively, the active diagnoser can remove can-

didate diagnosis and reduce ambiguity by probing the system. Depending

on the framework being considered, performing an observation on the sys-
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tem might have a cost [84] or be a potentially disruptive action, since it

impacts the nominal operation of the system [48] (e.g., turn on/off a com-

ponent). For this reason, most approaches for autonomous systems are

based on passive techniques.

3.1.2 DES Diagnosis

Diagnosis of Discrete Event System finds its roots in the work by Sampath

et al. [137]. In that paper, the authors propose an approach for testing the

diagnosability of DES, and synthesizing the diagnoser through a subset

construction. By doing so, they obtain a diagnoser that is able to state

whether a fault occurred or not. Several extensions to this work consider

extensions and relaxed some assumptions of this seminal work.

First of all, the diagnosability test proposed by Sampath et al. requires

to build the diagnoser. Since this is an expensive step, [101] proposes a

polynomial time1 technique for testing the diagnosability of the DES: the

twin-plant approach. In this way, the construction of the diagnoser can be

performed only for those systems that are diagnosable.

Due to the exponential construction, the size of the DES remains the

limiting factor in the applicability of these techniques. Several works try

to tackle the problem, by showing how to break the model of a global

diagnoser into multiple local diagnosers [141, 10, 102].

The original approach is limited to permanent faults. However, in prac-

tice, we are interested in explaining more complex behaviors. In [111]

and [100] supervision patterns are used to provide richer explanations of

what the fault means for the system.

Most approaches assume that all observations are available from the

beginning, a notable exception is [148], in which techniques to consider

windows of observations are proposed. Moreover, they discuss whether by

1Using an explicit, i.e., not symbolic, representation of the DES
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Technique System Type Time Model Sensing Output Runtime

Model-Based Sequential Discrete Passive Alarms Compilation

Data-Driven Combinational Continuous Active Diagnosis On-the-Fly

Rule-Based Probabilities

Figure 3.1: Positioning of this work

recording an additional bit of information, it is possible for the diagnoser

to improve its accuracy. Observations are crucial for performing diagnosis.

In certain contexts, however, assuming that all observations are perfect

might be a strong assumption. In [110], different types of uncertainty in

the observations are considered, including uncertainty between the order

of observations, their provenance, or their concrete values.

Continuous time behavior (as opposed to discrete time) is considered

in [151]. By limiting the analysis to non-zeno path, it is possible to ex-

tend the concept of delay to the timed context. Authors also provide an

algorithm to construct the explicit diagnoser using Difference Bound Ma-

trices [18].

Probabilities to the possibility of being in a given state are considered

in [149], by using Stochastic DES. An algorithm is provided to build a

diagnoser that, at every transition, updates the probability of the system

of being in a given state. Therefore, given a sequence of observations, it

is possible to compute the probability of being in a faulty condition, and

thus attach a likelihood to each diagnosis.

3.1.3 FDIR Design

Autonomy on spacecraft is a long standing objective [126]. The goal of the

FDIR is to make the system react to unexpected events, and preserve the

safety and mission of the spacecraft.

In this thesis, we focus on model-based techniques for discrete-time re-

active systems. An FDI is a system that performs passive diagnosis that
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has an alarm as output in order to trigger a recovery. In order to be able to

verify the FDI, and to use it on-board autonomous systems, we are inter-

ested in compilation approaches. Figure 3.1 provides a schematic overview

of the positioning of this work with respect to the landscape of the state

of the art. The different dimensions that need to be considered are mostly

unrelated to each other. We consider the combination highlighted in bold,

due to its relevance in the FDIR setting.

To design the FDIR we need data concerning the hardware dependabil-

ity [86], such as Failure Mode Effect Criticality Analysis (FMECA [156]),

Fault Tree Analysis (FTA [156]), Common Cause Failure Analysis, and

Hazard Analysis. Unfortunately, this data becomes available late in the

life-cycle when development has already started. This impacts the FDIR

specification [75] and development, since the quality of FDIR depends on

data that is not available during early design phases. In turn, this leads to

a low FDIR maturity, or can introduce delays in the project. No dedicated

approach to FDIR development exists, which can be employed starting

form the early system development phases, and which is able to take into

account the design from both, Software and System (including Hardware)

perspective [75]. The existing approaches are specific (both in terminology

and application) to each company [132].

The FDIR needs to consider all combinations of faults and nominal be-

haviors [17], and might need to account for embedded FDIR capabilities of

sub-components. Therefore, the design of FDIR components is a challeng-

ing task by itself. Due to its complexity and importance, there is a need

of supporting the Verification and Validation (V&V) process of the FDIR

design [120].

In this setting, the ESA project COMPASS [36], represents an example

application of formal model based techniques for the design and validation

of spacecraft designs. In particular, COMPASS provides a language to
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model the Software and System of the spacecraft, and run model-checking

verification queries. In particular, it is possible to test the diagnosability

of certain faults and, if FDIR components are provided within the model,

it is possible to verify whether they can achieve detection and recovery.

COMPASS provides a good starting point, however, it does not help in the

process of specifying, nor designing the FDIR component.

The examples discussed so far are not unique of the European industry.

Indeed, NASA has also identified the need for better Fault Management

procedures. To achieve this goal, a handbook of Fault Management [128]

has been under development since 2008. The goal of this manual is to

collect the experience from multiple NASA centers, and industrial partners,

and agree on a common terminology and strategy.

The ECSS standards define a way to perform on-board monitoring for

aerospace devices. In particular, the Packet Utilization Standard (PUS)

(Section 5.8.6 of [85]) On-board Monitoring Service can be configured to

performed on-board monitoring. Those monitors consider [129]:

• An exact value (up to a bit mask)

• A value within a lower-/upper-threshold

• A delta-monitoring in which the last values of the change in the value

of the parameter should be within a threshold

Each monitor supports a repetition value whose semantics depends on

the nature of the check to be performed. For limit-check and expected

values, this is the number of successive samples of the parameter that

can (or must) satisfy a condition before establishing a new status for the

parameter. For a delta-check, this is the number of consecutive delta values

to be used to evaluate an average delta value which is checked against the

delta check definition (i.e., average over successive pairs of values).
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All monitors can then be conditioned to a validity check, this is an

expression over other parameters that indicates whether the monitor should

be considered or not (e.g., a GPS unit providing off-nominal readings is

ignored if the GPS is off).

The use of PUS On-board monitoring systems simplifies (and limits) the

type of FDI components that can be implemented. Monitoring exact values

and lower-/upper-threshold requires the assumption that the current value

of the sensors is sufficient to detect and identify the faults. Indeed, we

do not need to recall the observations, but only whether they violated the

condition. For delta-checks, instead we need to keep track of the values in

order to be able to compute the average over the last repetitions. In any

case, we are considering a limited amount of observations and memory.

This is in contrast with the typical DES diagnosis view [137] in which we

assume that all observable events are considered (i.e., perfect-recall).

Verification Formal techniques have been applied to the verification of

FDIR in a few works.

COMPASS [36] is a project (and set of tools) for the formal development

of aerospace systems. Among others, it provides a way to perform diagnos-

ability analysis. Moreover, the verification tools can be applied to check

the behavior of an FDIR component. In [17] the authors explore a few al-

ternatives for formal modeling and verification of FDIR sub-components,

using tools such as OCAS [21, 37], and SCADE [70]. In [29], timing con-

straints in the FDIR recovery process are verified using the UPPAAL [16]

model-checker.

All these works focus on the application of formal techniques for the ver-

ification of the FDIR design. The model of the system is formally captured,

but the specification of the FDIR behavior is not. Therefore, the proper-

ties used to verify the FDIR are defined by the designer on a case-by-case
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bases. In order to achieve autonomy, however, verification of components

against ad-hoc properties is not sufficient. Instead of specifying how the

FDIR should behave, we need to be able to specify what we want to achieve

and what can be done within the system [126].

3.2 Model Checking Temporal Epistemic Logic

Model-checking is a field of formal verification that is starting to be suc-

cessfully applied in industry. Using model-checking tools, a user can verify

a given property against a model of the system [8]. The main benefits of

model-checking are the exhaustive search of the behavior of the system,

the production of a counter-example (in case the property is violated), and

the use of a model of the system that can be reused or derived from other

artifacts of the design process.

In this thesis, we focus on symbolic model-checking [121]. In symbolic

model-checking, the set of states is represented as a symbolic expression,

i.e., a formula. In this way, it is possible to describe large (or even infinite)

sets using a finite representation. Symbolic verification on finite models

is a consolidated field. Verification of infinite models (e.g., timed, hybrid)

is a newer field. Verifying infinite state models even for simple properties

is (in general) undecidable. Nevertheless, from the practical standpoint,

there have been many advancements related to both the identification of

decidable fragments, and the development of incomplete algorithms.

3.2.1 Specification Languages

The properties that we want to verify on the model can be expressed in dif-

ferent ways. Among the most common property specification types we have

reachability, linear time logic (LTL) and computation tree logic (CTL).

Reachability is concerned with whether a given state (usually considered
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a “bad” state) can be reached from an initial configuration. The dual

problem (invariant checking) is concerned with verifying that all reachable

states satisfy a certain (usually good) condition.

Reachability concerns states in isolation. In many case we are inter-

ested in the temporal evolution of the system. Temporal logics, such as

LTL and CTL are used for this. The difference between the two logics is

that the first considers each execution of the system in isolation. The sec-

ond, instead, considers the tree-like structure generated by multiple traces,

when a branching point is encountered. This makes it possible to consider

multiple behaviors of the system in parallel. For example, in LTL is not

possible to express a property concerning both branches of a conditional

statement in a program.

Verification of these logics is interested in the actual behavior of the sys-

tem. However, in situations like FDI design, we are interested in reasoning

about the potential knowledge of an external observer. Temporal epistemic

logics (TEL) are used to capture this type of properties. These logics are

considerably used in the domain of multi-agent systems, in which multiple

components (e.g., processes, autonomous systems) coexist and only have

limited information about the actions of the other components. This re-

quires verifying properties of relative knowledge. An example application

is the Bit Transmission Protocol, in which two processes try to exchange

information over an unreliable channel. The specification that we want to

verify in this type of situation is not only that the message will be eventu-

ally correctly received, but that the sender (by using the limited observable

information available to him) can know that the message was received cor-

rectly. Other interesting applications of TEL come from the the domain

of information security [9], or cryptographic protocols [30], where we are

interested in guaranteeing that some information will remain private, even

if some public information is shared.
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There are several ways of combining epistemic operators and temporal

operators, giving raise to several logics. The extension of LTL is called

sometimes KL [93] (sometimes LTLK [122]) and is the main focus on this

thesis. The extension of CTL is called CTLK [69, 94].

Due to the nature of multi-agent systems, it is interesting to study the

problem of coalitions, i.e., whether a set of agents is able to achieve a goal

by collaborating. ATEL [99] is an example of such a logic.

Two key aspects come into play when extending a temporal logic with

epistemic operators: which operators are included, and the recall of the

agents. In particular, many extensions that include the common knowl-

edge operator CG (everybody knows that everybody knows that ...) are

undecidable [93, 117]. The recall type is usually split in two types: perfect

and bounded recall. In perfect recall, the agent can remember all obser-

vations from the beginning of time, while in bounded recall, only a fixed

amount of observations are recalled (usually zero, sometimes called obser-

vational semantics). The type of recall also plays a significant role in the

complexity of the reasoning algorithms.

CTLK The standard approach to CTL model-checking is based on Bi-

nary Decision Diagrams (BDDs [46]). The idea behind the approach is to

navigate the syntax-tree of the formula, and recursively build the sets of

states that satisfy the given subformula. This algorithm allows a simple

extension to deal with CTLK if we are considering the zero recall for the

agents [116].

Apart from the BDD-based approach, a few works try to use SAT-

based techniques to reason about CTLK. An example is [103] in which an

unbounded model-checking technique is proposed.

To deal with perfect-recall, [69] proposes to use an oracle, in order

to decide in which states the epistemic atoms are satisfied. This oracle
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is obtained using a subset construction, in order to consider all possible

states that are observationally equivalent for the agent.

The use of an oracle to decide the satisfaction of the epistemic atoms is

further leveraged in [152]. In [152] the temporal epistemic model checking

problem is reduced to temporal model checking, by manually introducing

(expressions on) variables local to an agent that are satisfied if and only if

the corresponding epistemic expression is satisfied.

LTLK Bounded model-checking [22] (BMC) is a popular (incomplete)

technique for model-checking LTL properties using a SAT-based engine.

Intuitively, this technique works by defining constraints on the trace that

we want to find, and asking the SAT solver to find such a path.

Extensions of this approach to LTLK under observational semantics are

limited to the positive fragment, in which the epistemic operator K cannot

appear negated within the formula [122, 157]. The reason being that with

BMC we can only reason about one trace at the time while, in general, the

epistemic operator requires us to reason on multiple paths. This problem is

overcome in [153] (for perfect recall) by building an oracle for the epistemic

atoms, using a subset construction (similar to [69]). However, this approach

still requires the computation of the reachable states, and thus might not

be able to completely leverage the performance of SAT-based technologies.

IC3 BDDs are not able to deal with industrial size designs that can eas-

ily overcome 10200 states. For this reason, we are interested in applying

SAT/SMT based algorithms. IC3 [42] is a recent SAT-based algorithm for

the verification of invariant properties on finite state systems. This tech-

nique has shown impressive performances in the Hardware model-checking

competition, and is becoming one of the most used algorithms in the model-

checking community. Extensions to IC3 include dealing with infinite-state
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systems [51], and LTL properties [52] and CTL properties [95]. No work,

however, has attempted to use IC3 to perform verification of temporal

epistemic logic. In this thesis, we address this short-coming.

3.2.2 Models and Tools

Models in this domain are usually characterized by multiple agents (or pro-

cesses) performing actions following a protocol (i.e., their programming).

The outcome of these actions is regulated by an environment.

Most work on temporal epistemic model checking focuses on finite state

models. Notable exceptions are theoretical works considering continuous-

time [157], and infinite state systems (i.e., Artifact Centric Systems [15,

13]). Most algorithms for infinite state model-checking work by abstracting

the problem into a finite representation. This either requires a restriction

on the possible starting models [13], or an incomplete result [115].

However, tools for temporal epistemic logic model-checking are limited

to the verification of finite state systems. In this thesis, we work towards

addressing this limitation. In particular, we are interested in extending

tools for model-checking temporal logics over infinite state transition sys-

tems (such as nuXmv [47]) in order to deal with epistemic modalities.

The state of the art model-checkers for TEL are are MCMAS [116]

and MCK [88]. The two have a slightly different focus. MCMAS support

only the logics ATEL and CTLK under observational semantics, and the

reasoning engine is only based on BDDs. The limited scope is, however,

balanced by an efficient implementation, that is able to deal with models

of reasonable size (within the limits of the BDD technology).

MCK, instead, supports a wide range of logics, semantics and algo-

rithms [68]. For example, it supports observational, clock and perfect recall

semantics. Moreover, it has specialized algorithms for fragments of CTLK

and LTLK.
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Chapter 4

Plant and FDIR

In our general setting, a plant is connected to components for Fault Detec-

tion and Identification (FDI), and for Fault Isolation and Recovery (FR),

as depicted in Figure 4.1. The role of the FDI is to collect and analyze

the observable information from the plant, and to turn on suitable alarms

associated with (typically unobservable) conditions. The FR component

receives the alarms from the FDI and applies suitable reconfiguration ac-

tions to mitigate and recover from the detected (and potentially harmful)

situation.

Plant
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Figure 4.1: Integration of the FDIR and Plant

In this chapter, we informally describe the plant (Section 4.1), the FDIR
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(Section 4.2), and how the two components are connected (Section 4.3).

To connect the two components, we need to understand and define several

concepts such as the modeling formalism of the plant, observability require-

ments, memory of observations, and synchronization. A formal character-

ization of all those concepts is given in Section 4.4. The Battery Sensor

System, our running example, is presented in Section 4.5.

The contribution of this chapter is to clarify the relation between the

FDIR components (FDI, FR, and FDIRConf) and between the plant and

FDIR. This helps us better characterize the setting of the thesis. The

formal definitions and the running example are extended versions of the

ones presented in [34].

4.1 The Plant

The plant is the system that we want to diagnose and control. This can be

anything ranging from an industrial plant, to a satellite or a space rover.

In general, the plant is equipped with a nominal controller, that takes care

of the nominal operation of the system. The nominal controller might have

access to more sensors and actuators than the ones provided to the FDIR.

To properly capture the behavior of the plant, we need an expressive

formalism. In this work, we consider both plants modeled as finite state

systems, as well as plants modeled as infinite state systems, in order to

better capture the dynamics of the underlying physical system. There is

a clear trade-off between expressiveness of the modeling formalism and ef-

fectiveness of the reasoning tasks. For example, on finite state systems

we can enumerate all possible states in which a system can be, thus guar-

anteeing termination for many reasoning tasks. This is not the case for

infinite state systems, in which many reasoning tasks are undecidable. An-

other important distinction is whether we consider continuous or discrete
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Figure 4.2: Plant Modeling Process

time dynamics. Literature on diagnosis from the AI and DX community

has a stronger focus on finite state, discrete time systems [65, 134]. On

the other hand control theory and FDI communities tends to work with

infinite state, continuous time systems [127, 63].

We consider both finite and infinite state systems with discrete time

dynamics. The only exception to this is Chapter 9 where we discuss Timed

Failure Propagation Graphs, and the possibility of abstracting them from

continuous time to discrete time.

As depicted in Figure 4.2, the first step in modeling the plant for FDIR

design is to model it under nominal conditions, i.e., without faults. This

should include the nominal controller, in order to be able to verify that the

system fulfills the requirements in absence of faults. The case-studies and

examples discussed in this thesis, have been modeled using the nuXmv [47]

or the SLIM [39] language. Both languages can be used to model infinite

state discrete time systems and can be model checked against specifications

using, respectively, nuXmv and COMPASS [36]. This phase usually re-

quires multiple iterations, in which the plant is checked against validation

properties, until all behaviors of interest have been captured.

Once the model of the plant is completed, we can introduce fault mod-
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els, by a process called model fault extension. In this step we define which

faults are possible in the system and how they can affect it. We distinguish

between two type of fault models: strong and weak. A strong fault model

clearly defines the impact of the fault on the system. A typical example is

a valve being stuck at closed. The precise characterization of the fault can

give raise to more interesting diagnosis. However, defining fault models

in such detail is a difficult task that requires a deep knowledge and un-

derstanding of the system. A weak fault model, instead, simply specifies

that a component will not behave as expected, without defining how it will

behave. This type of fault model is more general, and it is particularly

suitable during the early stages of design, where details on the components

might not be available. The use of weak versus strong fault model should

be balanced against the ability for a diagnoser to perform accurately. A

weak fault model allows the component to mimic the nominal behavior

even in presence of a fault. This leads to faults that are not diagnosable

(by construction) in the classical sense, and the need for finer definitions

such as trace diagnosability (Section 5.5).

Once the model has been extended with faults, we can apply a wide

range of techniques to validate it. These techniques come from the domain

of model-based safety assessment and include Fault Trees [156], and Failure

Mode Effects Analysis [136]. Moreover, we need to make sure that each

fault can freely occur in the model. This can be done using techniques

from receptiveness analysis [2].

4.2 The FDIR

The techniques presented in this work can be applied to a variety of sys-

tems. However, we are mainly interested in systems that are autonomous,

with limited computational power, and limited to no access for manual

38



4.2. THE FDIR

maintenance. A typical system matching this criteria is a satellite or a

space rover. These systems pose constraints on space, energy and compu-

tation. Therefore, we focus on a compilation approach, in which the FDIR

is designed offline, and compiled into an executable form that can be effi-

ciently run on-board. This provides us with the need and opportunity of

formally verifying the compiled FDIR, in order to formally certify that it

meets our expectations.

The FDIR is divided into two sub-components: FDI and FR. These

components are formally defined by providing a characterization of their

expected behavior.

FDI The FDI takes sensors reading in input and estimates the state of

the plant. In many approaches [134], the diagnoser outputs a set of faults

that might have occurred. In our framework, we focus on the FDI abil-

ity of raising alarms. Intuitively, alarms are Boolean outputs associated

with the occurrence of some situation of interest. This provides a clear

Input/Output characterization of the FDI component: an FDI is a func-

tion that takes sensor readings in input and provides alarms as outputs

(Figure 4.3). Alarms are commonly associated to fault detection, fault

isolation, and fault identification. However, there is no reason to limit the

scope of the alarms to faults, especially considering that the same fault

in different situations might have a different severity, and thus need to be

addressed in different ways.

One important aspects of the FDI is its ability to store and use histori-

cal observations. Intuitively, an FDI that can remember a longer window

of observations might be able to perform more accurate diagnosis. The

capability of storing previous observations is called recall. The classic def-

inition of diagnosability for Discrete Event Systems [137], assumes perfect

recall : the ability to recall all observations from the beginning of time. This
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Figure 4.3: Abstract view of the FDI

yields the best possible diagnoser, however, it poses non trivial problems.

For finite-state plants, the size of the memory to store those observations is

exponential in the number of states of the plant. Even worse, for infinite-

state plants, it is in general impossible to achieve perfect recall with finite

memory. These issues motivate the idea of relaxing the perfect recall as-

sumption and considering the bounded recall case, where a fixed-length

window of observations is used. While this could seem like a simplistic as-

sumption, this matches real-world usage and design of FDI, where most of

the existing diagnosers use a limited amount of recall to decide whether the

system experienced some fault. This is partially motivated by the simplic-

ity of constructing this type of FDI, as a circuit taking in input the stored

observations. Finally, focusing on a finite window of observations provides

the ability to forget off-nominal observations: transient off-nominal sensor

readings will be discarded after a certain amount of time, and thus will

not impact the diagnoser forever; moreover, it is possible to restart the

diagnoser, since we do not need all observations in order to guarantee the

correct behavior of the diagnoser.

In this work we consider both perfect recall, due to its theoretical rele-

vance, and bounded recall, due to its practical relevance.

FR The FR takes the alarms in input and performs recovery actions. The

alarms work as triggers to start some predefined recovery sequence. The
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objective of the recovery is to take the system into some desired (i.e., goal)

configuration. The FR is a function that takes alarms in input and outputs

a recovery plan. As an example, let us consider a power-supply subsystem.

The FDI will raise an alarm if the primary power-supply component fails.

This alarm will be used by the FR to start the recovery, which goal is

to make the power-supply subsystem functional again by, for example,

switching to a secondary power-supply component.

An in-depth discussion of FR design is out of the scope of this work.

Techniques for FR design can be found in the AI literature on planning.

As an example, in the AUTOGEF and FAME projects (see Chapter 10)

we applied (respectively) techniques from planning under partial observ-

ability [19], and conformant planning [144] literature. In planning under

partial observability the FR has access to some sensors of the system. The

sensor data can be used to better reason on the non-determinism of the

system. In this context, a plan is a sequence of actions with conditional

branches. The conditions on the branches are expressed on the observable

part of the system that the FR uses to decide how to continue the plan

execution (e.g., if the light is green execute action A, otherwise action B).

In conformant planning the FR does not have any access to the sensors of

the system. A conformant plan needs to work independently of the non-

determinism of the system. In this context, a plan is a sequence of actions,

without conditional branching. Conformant plans are more difficult to find

but they are easier to implement.

FDIRConf Separating the FDI from FR makes it possible to better deal

with the specification of the requirements and the design of the solution:

both components can be designed independently and in parallel. In this

way, improvements to the FDI capabilities do not require the re-design of

the FR (and vice-versa). This is particularly useful for validation and cer-
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FDI FRFDIRConfSensors Recoveries

Figure 4.4: FDIRConf integration in the FDI

tification, as well as for experimentation of novel solutions. However, this

poses the problem of boot-strapping the FDI, i.e., provide the possibility

to the FDI to reason about the system during and after the FR execution.

In our case-studies (Chapter 10), we address this problem by only allowing

the FR to issue commands that are part of the nominal behavior of the

system. In other words, any execution that includes FR activities exists as

a nominal execution of the system. This makes the nominal model less di-

agnosable (in general), and a better integration of the two systems should

be considered in the future.

This division of concerns requires coordination. For this reason, we in-

troduce an additional component called FDIRConf. The FDIRConf is re-

sponsible for forwarding the alarms from the FDI to the FR. This provides

a clean interface for dealing with the issue of mission phases and opera-

tional modes. The operational life of a system is composed by a succession

of phases that have different characteristics, these are usually called mis-

sion phases. Launch, insertion to orbit, and science are examples of the

different mission phases of a satellite. Moreover, there might be differ-

ent operational conditions for the spacecraft. These are called operational

modes and usually indicate which parts of the system are enabled. Each

phase and mode might have different FDIR requirements: i.e., different

alarms and different recovery goals. We use the FDIRConf to manage this

complexity. In particular, we design the FDI in order to always provide all
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the alarms, and let the FDIRConf suppress the ones that are not relevant

for the current phase and mode. Active alarms are then routed to the re-

covery trigger that is relevant for the current phase and mode. Figure 4.4

provides a more detailed picture of the FDIR component, when includ-

ing the FDIRConf. The FDIRConf can use information coming from the

sensors in order to understand which are the current mission phase and op-

erational mode. This type of design is used in our case studies and further

discussed in Chapter 10.

4.3 Connecting the Plant and the FDIR

We described the the Plant and the FDIR separately, and now we focus

on the key issues to consider when connecting these two components to-

gether. The FDIR interacts with the plant through actuators and sensors.

We consider the actuators to be simple events, and focus on the relation

between sensors and FDI accuracy. This requires us to discuss:

1. observability and domain of observations,

2. synchronicity of the observations,

3. and sampling of the observations.

Observability We assume sensors to only be able to access the observable

part of the system. The plant might model physical quantities, that have

an infinite domain characterization, e.g., real-valued domains. Therefore,

we allow sensor readings to have both finite and infinite domain. In many

practical situations, however, the exact value of an infinite domain sensor

reading is not important. What matters, instead, is the historical trend of

the value [44], whether it is below/above a certain threshold, or whether

it matches a specific value within an error range. From a sensor that
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provides an infinite domain reading (e.g., a real-valued tachometer) we can

derive multiple finite domain sensors, that provide us an abstracted view

of the quantity that we are measuring. Therefore, it is not the case that

all infinite state models require infinite domain sensors.

Given a plant and some requirement for the FDI, the only two ways to

improve the accuracy of the FDI are to increase the number of sensors, or

to increase the recall of the FDI. Therefore, the set of sensors in the model

plays a crucial role on the effectiveness of the FDI. We will formalize this

concept when discussing diagnosability in Chapter 7.

Synchronous vs Asynchronous Once we have defined which observations

are shared among the plant and FDIR, we need to define when they are

shared. This boils down to defining whether the two systems evolve syn-

chronously or asynchronously. In the synchronous case, observations and

alarms are constantly synchronized between the FDI and the plant. This

means that no observation can go undetected by the FDI. However, this

also means that the FDI is not able to perform a diagnosis in between ob-

servations. In the asynchronous setting, instead, observations and alarms

are updated only during synchronization points (i.e., events). Thus, ob-

servations that occur in-between two synchronization points might not be

seen by the FDI. On the other hand, this allows both systems to evolve

independently, and at different speed.

In [33] we use synchronous composition to connect the plant to the

FDIR. The synchronous case can be seen as a particular case of the asyn-

chronous case, by considering every event as a synchronization event. There-

fore, as done in [34], in this work we use the more general setting of asyn-

chronous composition.
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Discrete vs Continuous Time In the synchronous composition, the FDI and

plant evolve at the same speed. However, in the asynchronous composi-

tion, this is the case only if both systems have a continuous time dynamic,

but not if both have a discrete time dynamic. This is particularly inter-

esting, because the FDI might be able to perform diagnosis in-between

two synchronizations, by keeping track of how much time has passed. We

will discuss this behavior in Chapter 9 when presenting the validation of

Timed Failure Propagation Graphs, that is a formalism that is inherently

continuous time. Nevertheless, in Chapter 9 we will also show how we can

go from a continuous to a discrete time plant, and how to design the FDI

accordingly.

4.4 Formal Definitions

A partially observable LTS is an LTS S = 〈V,E, I, T 〉 extended with a

set Eo ⊆ E of observable events. Observations on state variables are used

in practice, however, they make the formalism less clear. We limit the

formalism only to observations on events and, whenever observations on

state variables are needed, we incorporate them in the events (as done

in [138]). Notice that extending the events set with observations over

infinite domain variables will lead to an infinite set of events.

A plant P = 〈V P , EP , IP , T P , EP
O〉 is a partially observable labeled tran-

sition system. An FDI component (or diagnoser) is a machine D that syn-

chronizes with observable traces of the plant P . D has a set A of alarms

that are activated in response to the monitoring of P . We use the gen-

eral model of asynchronous composition to combine the diagnoser with the

plant through observable events.

Definition 6 (Diagnoser). Given a set A of alarms and a partially ob-

servable plant P = 〈V P , EP , IP , T P , EP
O〉, a diagnoser is a deterministic
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LTS D(A, P ) = 〈V D, ED, ID, TD〉 such that ED ⊆ EP
o , V P ∩ V D = ∅ and

A ⊆ V D.

When clear from the context, we use D to indicate D(A, P ).

We assume that the plant and diagnoser are composed asynchronously:

i.e., D ⊗ P . Only observable events are used to perform synchronization.

All the events of the diagnoser are observable events of the plant. This

means that the diagnoser does not have internal transitions: every tran-

sition of the diagnoser is associated with an observable transition of the

plant. This means that the diagnoser is a deterministic LTS. Having a

deterministic diagnoser is useful because it makes it easier to understand

how it will react to the observations coming from the plant:

Definition 7 (Diagnoser Matching trace). Given a diagnoser D of P and

a trace σP of P , the diagnoser trace matching σP , denoted by D(σP ), is

the trace σ of D such that σ ⊗ σP is a trace of D ⊗ P .

The notion of diagnoser matching trace is well defined because D is de-

terministic, and therefore there exists one and only one trace in D matching

σP .

In [34] we required the set of events of the diagnoser to coincide with the

set of observable events of the plant (ED = EP
o ). In this work, we relax this

condition, in order to be able to study the behavior of diagnosers that have

access to different sets of observables. For example, a diagnoser D1 might

have access to more sensors than another diagnoser D2 (ED1 ⊃ ED2), or to

a different set of sensors (ED1 ∩ ED2 = ∅). This allows us to reason about

relative knowledge when having access to different amount of information.

This idea is at the base of the sensor placement problem, as discussed in

Chapter 7.

Definition 8 (Observable Trace). Let Eo be the set of observable events

of the partially observable transition system P , and let σ be a trace of P .
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The observable trace associated with prefix σk of σ is defined recursively

as follows:

- obsEo
(σ0) = ε (empty sequence);

- if e ∈ Eo, then obsEo
(σk, e, s) = obsEo

(σk), e;

- if e 6∈ Eo, then obsEo
(σk, e, s) = obsEo

(σk).

Since we are in an asynchronous setting, we allow the diagnoser to up-

date its knowledge of the observables during particular points: i.e., during

synchronization events.

Definition 9 (Observation Point). We say that i is an observation point

for σ, denoted by ObsPoint(σ, i), iff the last event of σi is observable, i.e.,

iff σi = σ′, e, s for some σ′, e, s and e ∈ Eo.

The notion of two traces being observationally equivalent requires that

the two traces end both (or neither) in an observation point. This captures

the idea that a trace ending in an observation point can be distinguished

from the same trace extended with local unobservable steps. In other

terms, an observer can distinguish the instant in which it is observing and

an instant right after.

In many situations, we are interested in considering formulas only at

observation points. We do so by introducing the following abbreviation:

Definition 10 (Observed). If Eo is the set of observable events, given a

formula φ, we use xφy (read “Observed φ”) as abbreviation for φ∧Y
∨
e∈Eo

e.

This notation is useful to stress that something can happen only during

synchronization events. We say that the alarm A is triggered when A is

true after the diagnoser synchronized with the plant (i.e., when xAy is true).
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Generator 1

Generator 2

Battery 1

Battery 2

Sensor 1

Sensor 2

Switch

Generator IN

Generator IN

Sensor OUT

Sensor OUT

Mode Selector

Device

Power
Control
Data

Figure 4.5: Battery Sensor System

4.5 The Battery Sensor System Example

The Battery Sensor System (BSS) (Figure 4.5) will be our running exam-

ple [34]. The BSS provides a redundant reading of the sensors to a device.

Internal batteries provide backup in case of failure of the external power

supply. The safety of the system depends on both of the sensors providing a

correct reading. The system can work in three different operational modes:

Primary, Secondary 1 and Secondary 2. In Primary mode, each sensor is

powered by the corresponding battery. In the Secondary modes, instead,

both sensors are powered by the same battery; e.g., during Secondary 1,

both Sensor 1 and Sensor 2 are powered by Battery 1. The Secondary

modes are used to keep the system operational in case of faults. However,

in the secondary modes, the battery in use will discharge faster.

We consider two possible recovery actions: i) Switch Mode, or ii) Re-

place the Battery-Sensor Block (the dotted block in Figure 4.5). In order to

decide which recovery to apply, we are going to define a set of requirements

connecting the faults to alarms. The faults and observable information of

the system are shown in Figure 4.6.

This example is particularly interesting because we can define two

sources of delay: the batteries, and the device resilience to wrong inputs.
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Observables Possible Values

Mode Primary, Secondary 1, Secondary 2

Battery Level {1, 2} High, Mid, Low

Sensors Delta Zero, Non-Zero (|S1.Out− S2.Out| = 0)

Device Status On, Off

Component Faults

Generator Off (G1Off , G2Off )

Battery Leak (B1Leak, B2Leak)

Sensor Wrong Output (S1WO, S2WO)

Figure 4.6: Observables and Faults Summary

The batteries provide a buffer for supplying power to the sensors. The

size of this buffer is determined by the capacity of the battery, the initial

charge, and the discharge rate. For the device, we assume that two valid

sensor readings are required for optimal behavior, however, we can work in

degraded mode with only one valid reading for a limited amount of time.

The device will stop working if both sensors are providing invalid readings,

or if one sensor has been providing an invalid reading for too long.

Both a synchronous and asynchronous version of this model are pos-

sible. In the asynchronous model, we have an event for each possible

combination of observations (e.g., “Mode Primary & Battery 1 Low”). In

the synchronous model, we also have an additional observable event (tick)

that represents the passing of time in the absence of any observable event.

This event forces the synchronization of the plant with the diagnoser. The

key difference between the synchronous and asynchronous setting is the

amount of information that we can infer in this particular case. For ex-

ample, if we know the initial charge level of a battery, and we know its

discharge rate (given by the operational mode), then at each point in time

we can infer the current charge of the battery. By comparing our expecta-

tion with the available information, we can detect when something is not

behaving as expected. Unfortunately, there are practical settings in which

the assumption of synchronicity is not realistic. Therefore, our approach

accounts for both the synchronous and asynchronous models.

To provide a better understanding of how the running example behaves,

we provide the LTS of each of the components. Figure 4.7 shows the LTS
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of the generator and switch. We assume that the only way the generator

can turn off is if a fault event occurs, thus the model of the generator is

rather simple. Also the switch features a rather simple model, where the

labels toS1 and toS2 are defined as:

• toS1: Mode=Secondary1 ∧ Battery1.Double ∧ Battery2.Offline

• toS1: Mode=Secondary2 ∧ Battery1.Offline ∧ Battery1.Double

thus they drive the change in operational mode of the batteries.

Onstart Off
Fault & Off Primary

Secondary

1

Secondary

2

start

toS1 toS2

Figure 4.7: Generator (Left) and Switch (Right) LTS

Figure 4.8 shows two slightly more complex components: the sensor

and the device. The sensor periodically outputs a good or a bad reading

depending on the state it is in. Notice that the transition from a good to a

bad state can occur either because of a fault (Wrong Output in Figure 4.6)

or because the battery connected to the sensor has no charge (Batt.c = 0),

notice, in particular, that both events are not observable. The device

instead has two main transitions. The stay is defined as S1.V alue =

S2.V alue ∧ Delta = Zero, while degrade represents a discrepancy in the

reading from the sensor that will eventually lead to the device stopping:

(S1.V alue 6= S2.V alue)∧Delta =Non-Zero. The values of the sensors are

not observable, but their difference is observable via the Delta variable.

Intuitively, the device has an intermediate state that works as a buffer,

before reaching the final Off state.

The most complex component, the battery, is presented in Figure 4.9.

Vertical transitions indicate a change in operational mode of the battery.
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Good (N)start Bad (N) Bad (F)

Value=Good

Batt.c = 0

Fault

Value=Bad

Fault

Batt.c > 0

Value=Bad

Onstart On Off

stay

degrade

x′ = x− 1

x=0 ∧ Off

Figure 4.8: Sensor (Left) and Device (Right) LTS

The left half of the LTS indicates that the generator is working and feeding

the battery (thus charging it) while the right half shows that the battery

is not charging. Additionally, the two central columns describe the faulty

behavior of the battery. This information is represented also in each state.

Each state has an additional self-loop (not in the picture) denoting the

update of the charge of the battery, following the update rule:

charge′ = (charge+ recharge− (load+ leak)) mod C

where C is the capacity, and the other variables depend on the state:

1. Charging: recharge = 1, Not Charging: recharge = 0

2. Primary: load = 1, Offline: load = 0, Double: load = 2

3. Nominal: leak = 0, Faulty: leak = 2

Thus the charge of the battery can change from +1 (Nominal, Offline,

Charging) to −4 (Faulty, Double, Not Charging), while staying within the

bound [0, Capacity].

Every time the update of the charge causes the charge to pass a thresh-

old, the transition raises the observable event: Low, Mid, High. These

events indicate when the charge of the battery is above 20%, 50% and

80%. All other transitions are not observable. These transitions have been

omitted from the figure to make it more readable.
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Figure 4.9: Battery LTS

4.6 Chapter Summary

In this chapter, we discussed the general setting of FDIR design in which

this thesis is set. In particular, we described the process for modeling

the plant, the FDI, FR and FDIRConf. Key concepts in the interaction

between the FDIR and the system were introduced: observability require-

ments, synchronicity and recall. We provided formal definitions for all

those concepts, and presented the Battery Sensor System running exam-

ple.
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Formal Specification of FDI

To be able to build, verify and certify an FDI, we first need to provide a

clear definition of what we want the FDI to do. As we discussed in the

previous Chapter, the FDI is a function mapping observations to alarms.

In this Chapter, we provide a formal definition of alarm, and show how to

specify what we are interested in monitoring (diagnosis condition – Sec-

tion 5.1), delays in the raising of alarms (alarm condition – Section 5.2),

and how many observations the diagnoser can use (recall – Section 5.3).

This will provide us with a clear characterization of the FDI, and open the

problem of whether an FDI that satisfies the given specification even exists

(diagnosability – Section 5.4). Moreover, we will show that when consid-

ering delays, we might have multiple behaviors of the FDI that satisfy the

same specification, and how to limit this (maximality – Section 5.6). Fi-

nally, we discuss under which operational constraints the FDI is supposed

to work (context – Section 5.7).

The contribution of this chapter is to formalize the key concepts needed

for the specification of alarms. This extends [34] by showing how to deal

with both bounded and perfect recall in an unified setting, and by formal-

izing the concept of Context.
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5.1 Diagnosis Conditions

The first element for the specification of the FDI requirements is given

by the conditions that must be monitored. The literature usually focuses

on detection and identification, which are the two extreme cases of the

diagnosis problem. The detection task is the problem of understanding

when (at least) one fault has occurred. The identification task tries to

understand exactly which fault has occurred. In the Battery Sensor System

(BSS) every component can fail. Therefore the detection problem boils

down to knowing that at least one of the generators, batteries or sensors

is experiencing a fault. For identification, instead, we are interested in

knowing whether a specific fault, (e.g., G1Off) occurred.

Between these two cases there can be intermediate ones: we might want

to restrict the detection to a particular sub-system, or identification among

two similar faults might not be of interest. For example, we might not be

interested in distinguishing whether G1Off or B1Leak occurred, as long as

we know that there is a problem in the power-supply chain.

FDI components are generally used to recognize faults. However, there

is no reason to restrict our interest to faults. Recovery procedures can differ

depending on other non-observable conditions of the plant. For example,

we might want to estimate the charge level of a battery, or its discharge

rate.

We call the condition of the plant to be monitored diagnosis condition,

denoted by β. We assume that for any point in time along a trace execution

of the plant (and therefore also of the system), β is either true or false

based on what happened before that time point. Therefore, β can be an

atomic condition (including faults), a sequence of atomic conditions, or

Boolean combination thereof. If β is a fault, the fault must be identified;

if β is a disjunction of faults, it suffices to perform the detection, without
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identifying the exact fault.

Diagnosis

Condition
Definition

βGenerator1 G1Off

βBattery1 B1Leak

βPSU1 G1Off ∨B1Leak

βBatteries B1Leak ∨B2Leak

βSensor1 S1WO

βSensors S1WO ∨ S2WO

βBS (S1WO ∨ S2WO) ∨ (B1Leak ∧B2Leak)

βSeq (B1Charge < B2Charge) ∧O(B1Charge ≥ B2Charge)

βCharging Y (B1Charge ≤ 0) ∧ (B1Charge > 0)

βDepleted (B1Charge = 0) ∨ (B2Charge = 0)

Figure 5.1: Diagnosis conditions for the Battery-Sensor System

Figure 5.1 shows several examples of diagnosis conditions for the BSS.

Conditions might be complex: e.g. knowing if the Battery-Sensor block is

working (βBS) or knowing some information on the evolution of the system

(βSeq, βCharging). In the example, we use LTL operators to define those

diagnosis conditions, but in general, we require that a diagnosis condition

can be evaluated on a point in a trace by only looking at the trace prefix.

5.2 Delay and Alarm Conditions

The second element of the specification of FDI requirements is the relation

between a diagnosis condition and the raising of an alarm. This also leads

to the definition of when the FDI is correct and complete with regard to a

set of alarms.

An alarm condition is composed of two parts: the diagnosis condition

and the delay. The delay relates the time between the occurrence of

the diagnosis condition and the corresponding alarm. Although it might
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be acceptable that the occurrence of a fault can go undetected for a

certain amount of time, it is important to specify clearly how long

this interval can be. An alarm condition is a property of the system

composed by the plant and the diagnoser, since it relates a condition

of the plant with an alarm of the diagnoser. Thus, when we say that a

diagnoser D of P satisfies an alarm condition, we mean that the traces

of the combined system D ⊗ P satisfy it. Interaction with industrial

experts led us to identify three patterns of alarm conditions, which we de-

note by ExactDel(A, β, d), BoundDel(A, β, d), and FiniteDel(A, β):

1. ExactDel(A, β, d) specifies that whenever β is true, A must be

triggered exactly d steps later and A can be triggered only if d steps earlier

β was true; formally, for any trace σ of the system:

(Completeness) if β is true along σ at the time point i, then xAy is

true in σ[i+ d];

(Correctness) if xAy is true in σ[i], then β must be true in σ[i− d].

2. BoundDel(A, β, d) specifies that whenever β is true, A must be

triggered within the next d steps and A can be triggered only if β was true

within the previous d steps; formally, for any trace σ of the system:

(Completeness) if β is true along σ at the time point i then xAy is true

in σ[j], for some i ≤ j ≤ i+ d ;

(Correctness) if xAy is true in σ[i], then β must be true in σ[j′] for

some i− d ≤ j′ ≤ i.

3. FiniteDel(A, β) specifies that whenever β is true, A must be trig-

gered in a later step and A can be triggered only if β was true in some

previous step; formally, for any trace σ of the system:
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(Completeness) if β is true along σ at the time point i then xAy is true

in σ[j] for some j ≥ i;

(Correctness) if xAy is true in σ[i], then β must be true along σ in

some time point between 0 and i.

Figure 5.2 provides an example of admissible responses for the various

alarms to the occurrences of the same diagnosis condition β; note how in

the case of BoundDel(A, β, 4) the alarm can be triggered at any point

as long as it is within the next 4 time-steps. Since A is a state variable

and the diagnoser changes it only in response to synchronizations with the

plant, every rising and falling edge of the alarm in the figure corresponds

to an observation point.

β

ExactDel(A, β, 2)

BoundDel(A, β, 4)

FiniteDel(A, β)

Figure 5.2: Examples of alarm responses to the diagnosis condition β.

Pattern Description

ExactDel(PSU1Exacti , βPSU1, i) Detect if the PSU 1 (Generator 1 + Battery 1)

is broken, in order to switch to secondary mode

BoundDel(PSU1Bound, βPSU1, C) Detect if the PSU (Generator 1 + Battery 1)

was broken within the bound, in order to switch

to secondary mode

BoundDel(BS, βBS, DC) Detect if the whole Battery-Sensor block is

working incorrectly, in order to replace it

FiniteDel(Discharged, βDepleted) Detect if any of the battery was ever completely

discharged

Figure 5.3: Example Specification for the Battery-Sensor System
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Figure 5.3 contains a simple specification for our running example.

There are two types of PSU (Power Supply Unit) alarms (that can be

similarly defined for PSU 2). The first one defines multiple alarms, each

having a different delay i. Let us assume that each battery has a capacity

C of 10, and that this provides us with a delay of at most 10 time-units.

We can instantiate 10 alarms one for each i ∈ [0, 10]. Ideally, we want to

detect the exact moment in which the PSU stopped working. However,

it might not be possible to know the precise moment due to the limited

amount of information available (non-diagnosability). Therefore, we define

a weaker version of the alarm (PSU1Bound), in which we say that within

the time-bound provided by the battery capacity (C) we want to know if

the PSU stopped working. For most alarms, we specify what recovery can

be applied to address the problem. In this way, our process of defining the

alarms of interest is driven by the recovery procedures available. If there

is no automated recovery for a given situation, time-bounds might not be

relevant anymore. Therefore, we use alarms to collect information on the

historical state of the system (e.g., Discharged alarm); notice, in fact,

that FiniteDel alarm have a permanent behavior, i.e., they can never be

turned off.

5.3 Diagnoser Recall

A diagnoser might have constraints on the amount of information that it

can remember and use for reasoning. We consider two cases: perfect recall

and bounded recall. To capture the concept of recall, and the amount of

observations performed by each observer, we use the concept of observable

trace of a partially observable transition system as ground-truth of what

can be observed, and derive all other possible observable traces from it.

We define a family of observation functions that can either be perfect
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recall or bounded recall, and are parametric w.r.t. the set of observable

events.

Definition 11 (Reduced Observable Trace). Given an observable trace

ω = e1, · · · , ek computed over the set of events EO, a recall R ∈ [0..∞],

and the assumption that ∞− 1 =∞, we have that obsRED
is defined as:

• R > 0:

– ek ∈ ED: obsRED
(e1, · · · , ek) = obsR−1

ED
(e1, ..., ek−1)ek

– ek 6∈ ED: obsRED
(e1, · · · , ek) = obsRED

(e1, ..., ek−1)

• R = 0:

– ek ∈ ED: obsRED
(e1, · · · , ek) = ek

– ek 6∈ ED: obsRED
(e1, · · · , ek) = ε

with the base case obsRED
(ε) = ε.

For perfect recall (R = ∞), we lose information only if we reduce the

set of observable events. For bounded recall, instead, we reduce the trace

to the latest R observations. It might happen that there are not enough

observations, thus we obtain an observable trace that is less than R events

long. We write obs∞ED
to indicate a perfect recall observation function w.r.t.

the events set ED; we write obsnED
to indicate the bounded recall observation

function w.r.t. the events set ED and with n recall steps.

If we do not specify the recall, we intend perfect, and if we do not specify

the set of events, we consider all the observable events of the plant. This

also matches the fact that the best possible diagnoser is the one with access

to the most information and perfect recall.

For every trace σ of a plant, we can compute the observable trace ω =

obs(σ). Therefore, for simplicity, we extend the definition of obsRED
in order

to be applicable on traces, and write obsRED
(σ) instead of obsRED

(obs(σ)).
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The recall information is central to the definition of observationally

equivalent traces.

Definition 12 (Observational Equivalence). Given two traces and points

(σ1, i) and (σ2, j), a set of observable events EO and a recall R, we say

that ObsEqREO
((σ1, i), (σ2, j)) iff:

- ObsPoint(σ1, i) iff ObsPoint(σ2, j), and

- obsREO
(σi1) = obsREO

(σj2).

We write ObsEq if the set of events and the type of recall are clear from

the context. This abstract definition of observational equivalence allows

us to consider multiple degrees of observability and recall within the same

framework.

5.4 System Diagnosability

Given an alarm condition, we need to know whether it is possible to build

a diagnoser for it. In fact, there is no reason in having a specification

that cannot be realized. This property is called diagnosability and was

introduced in [137]. We adapt the concept of diagnosability for the different

types of alarm conditions.

Definition 13. Given a plant P , a diagnosis condition β, a recall R and

a set of observables EO, we say that ExactDel(A, β, d) is system diag-

nosable in P iff for all (σ1, i) s.t. σ1, i |= β then ObsPoint(σ1, i + d) and

for all (σ2, j), if ObsEqREO
((σ1, i+ d), (σ2, j + d)), then σ2, j |= β.

Therefore, an exact-delay alarm condition is not diagnosable in P iff either

there is no synchronization after d steps (note that this is not possible in

the synchronous case) or there exists a pair of traces σ1 and σ2 such that
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Figure 5.4: Critical Pair: A fault occurs but observations match a nominal execution.

for some i, j ≥ 0, σ1, i |= β, ObsEq((σ1, i + d), (σ2, j + d)), and σ2, j 6|= β.

We call such a pair a critical pair.

The idea of a critical pair is that a diagnoser that can only see the

observable part of the trace, cannot know whether the system is executing

the trace σ1 or σ2, as shown in Figure 5.4 (for a given recall and observables

set). Notice that this uncertainty is only in the diagnoser’s mind, and the

actual plant must be in either one or the other. Extending the observables

set or increasing the recall might disambiguate the two traces.

Definition 14. Given a plant P , a diagnosis condition β, a recall R,

and a set of observables EO, we say that BoundDel(A, β, d) is system

diagnosable in P iff forall (σ1, i) s.t. (σ1, i) |= β there exists k s.t. i ≤ k ≤
i + d, ObsPoint(σ1, k) and for all (σ2, l), if ObsEqREO

((σ1, k), (σ2, l)), then

there exists j s.t. l − d ≤ j ≤ l and (σ2, j) |= β.

Intuitively, k and l denote points that are observationally equivalent, i

and j denote the states where the condition occurred, and their relation is

such that i and j do not occur more than d steps away from each other.

This definition takes into account occurrences of β that happened before

i. Indeed, we need to check occurrences up to d states before and after

i. Consider the two traces σ1 = apbqc and σ2 = aqbpc, where a, b, c are

observable events, and β = p. We can see that we can justify p in σ1 by
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looking at the occurrence of p in σ2 that is in the future. However, we

cannot justify the p in σ2 by just looking in the future, but we need to look

in the past.

Differently from the classical definition of [137], we use the delay to

limit the scope of comparison of the traces of the critical pair. This means

that we do not require the diagnosis condition to be permanent but allow

transient conditions (e.g., transient faults). Moreover, we can deal with

multiple occurrences of the same condition transparently.

Sampath’s definition of diagnosability can be obtained as a special case

of Definition 14:

Definition 15. (Sampath’s Diagnosability [137]) Given a plant P and a

diagnosis condition β, we say that β is diagnosable in P iff there exists d

s.t. for all (σ, i), (σ2, l), k ≥ i + d if σ1, i |= β and obs(σl2) = obs(σk1) then

there exists j ≤ l s.t. (σ2, j) |= β.

In [137] (specifically in Section II.A), Sampath et al. also assume that

there are no cycles of unobservable events. This means that there is a du

s.t. for all σ, i s.t. (σ, i) |= β then there exists k s.t. 0 ≤ k ≤ du and

ObsPoint(σ, i + k). Moreover, the definition of obs used there requires

perfect recall and observability over all observable events.

Theorem 1. Let P be a plant such that there is no cycle of unobservable

events, and let p be a propositional formula, then p is diagnosable (as

defined in 15) in P iff there exists d such that BoundDel(A,Op, d) is

system diagnosable in P .

Proof. ⇒) Assume that p is diagnosable in P . Consider a trace σ1 such

that for some i ≥ 0, (σ1, i) |= Op. Then, for some 0 ≤ i′ ≤ i,

(σ1, i
′) |= p. By assumption, we know that there is a d s.t. for all

k ≥ i′ + d and any trace σ2 and point l such that obs(σl2) = obs(σk1)

then (σ2, j
′) |= p for some j′, j′ ≤ l. Then (σ2, j) |= Op for all j ≥ j′.
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Since this holds for any k and l, it holds also for the k and l that

are observation points for σ1 and σ2. Let d′ = d + nu. Then there

exists k′ < d′ such that ObsPoint(σ1, i + k′) and for all (σ2, l) such

that ObsEq∞EO
((σ1, k

′), (σ2, l)) then (σ2, j
′) |= p for some j′, j′ ≤ l. We

can conclude that BoundDel(A,Op, d′) is system diagnosable in P .

⇐) Assume that BoundDel(A,Op, d) is system diagnosable in P . Con-

sider a trace σ1 such that for some i ≥ 0 (σ1, i) |= p. Then

(σ1, i) |= Op. By assumption, there exists k, i ≤ k ≤ i + d such

that ObsPoint(σ1, k) and, for any trace σ2 and point l such that

ObsEq∞EO
((σ1, k), (σ2, l)) then σ2, j |= Op for some l − d ≤ j ≤ l. Let

us consider σ2 and l such that obs(σl2) = obs(σk1). Then for some l′ ≤ l

we have that ObsPoint(σ2, l
′) and therefore ObsEq∞EO

((σ1, k), (σ2, l
′)).

Then (σ2, j) |= Op for some l − d ≤ j ≤ l. Thus (σ2, j
′) |= p for some

j′ ≤ j and P is diagnosable.

It is important to avoid confusing the delay of the alarm with the amount

of recall available to the diagnoser. It is possible for a diagnoser to raise

an alarm with a delay that is longer than its recall. Let us say that a

process in the plant requires exactly 100 time-steps to complete. Upon

seeing the event signaling the completion of the process, the diagnoser

knows (even with bounded recall 0) that the process started 100 time-

steps before. Similarly, having a long (or perfect) recall does not guarantee

that the diagnoser will be able to diagnose all alarms that have a short

delay.

If we do not want to include any requirement on delay between the

diagnosis condition occurrence and the raising of the alarm, we use finite

delay alarm conditions.
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Definition 16. Given a plant P , a diagnosis condition β, a recall R, and

a set of observables EO, we say that FiniteDel(A, β) is system diag-

nosable in P iff for all (σ1, i) s.t. (σ1, i) |= β then there exist k ≥ i s.t.

ObsPoint(σ1, k) and for all (σ2, l) if ObsEqREO
((σ1, k), (σ2, l)) then there ex-

ists j ≤ l (σ2, j) |= β.

In bounded delay (and in Sampath) we consider a delay d that works

for any trace. In finite delay, instead, we swap the quantifiers and for each

trace we pick a (potentially different) delay d that is enough to exclude all

critical pairs. This is a weaker form of diagnosability, and therefore there

are alarm conditions that are not bounded delay system diagnosable but

that are finite delay system diagnosable. The intuition is that in some cases

we can extend a critical pair at will. For example, imagine a system that

at each transition reduces the value of a variable x (i.e., x′ = x − 1). Let

us now assume that we can only observe x = 0. The diagnosis condition

is β := (x = (initx/2)), i.e. x has half its initial value. We can see that

whenever we reach x = 0 we know that previously β was met. However,

how many steps ago this happened depends on the initial value of x (that

is not observable!). For an infinite state system we can always pick a trace

with an initial value of x that is slightly bigger.

The following theorem shows that if a component satisfies the diagnoser

specification then the monitored plant must be diagnosable for that spec-

ification. In Chapter 8 (Synthesis) we will show also the converse, i.e., if

the specification is diagnosable then a diagnoser exists.

Theorem 2. Let D be a diagnoser for P . If D satisfies an alarm condition

then the alarm condition is system diagnosable in P .

Proof. By contradiction, suppose ExactDel(A, β, d) is not system diag-

nosable in P . Then either there exists a trace σ1 with σ1, i |= β for some

i such that ObsPoint(σ1, j) is false for all j ≥ i or there exists a critical
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pair. In the first case, A is not triggered and the diagnoser is not com-

plete. Suppose there exists a critical pair of traces σ1 and σ2, i.e., for some

i, j ≥ 0 (σ1, i) |= β, ObsPoint(σ1, i+ d), ObsEq((σ1, i+ d), (σ2, j+ d)), and

σ2, j 6|= β. Since D is deterministic, D(σ1) and D(σ2) have a common prefix

compatible with obs(σi+d1 ) = obs(σj+d2 ). If the diagnoser is complete then

A is triggered in D(σ1)⊗ σ1 at position i+ d, and so also in D(σ2)⊗ σ2 at

position j + d, but in this way the diagnoser is not correct, which is a con-

tradiction. If the diagnoser is correct, then A is not triggered in D(σ2)⊗σ2

at position j+ d, but so neither in D(σ1)⊗ σ1 at position i+ d, but in this

way the diagnoser is not complete, which is a contradiction.

Similarly, for FiniteDel(A, β) and BoundDel(A, β, d).

5.5 Trace Diagnosability

System diagnosability is defined as a global property of the plant. This

definition of diagnosability might be stronger than necessary. Imagine the

situation in which there is a critical pair and after removing this critical

pair from the possible executions of the system, our system becomes di-

agnosable. This suggests that the system was almost diagnosable, and

an ideal diagnoser would be able to perform a correct diagnosis in all the

cases except one: the one represented by the critical pair. We formalize

this idea by redefining the problem of diagnosability from a global property

expressed on the plant, to a local property expressed on points of single

traces.

Definition 17. Given a plant P , a diagnosis condition β, a recall R,

a set of observables EO, and a trace σ1 such that for some i ≥ 0

(σ1, i) |= β, we say that ExactDel(A, β, d) is trace diagnosable in (σ1, i)

iff ObsPoint(σ1, i + d) and for any trace σ2, for all j ≥ 0 such that

ObsEqREO
((σ1, i+ d), (σ2, j + d)), (σ2, j) |= β.
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Definition 18. Given a plant P , a diagnosis condition β, a recall R, a

set of observables EO, and a trace σ1 such that for some i ≥ 0 (σ1, i) |= β,

we say that BoundDel(A, β, d) is trace diagnosable in (σ1, i) iff there

exists k s.t. i ≤ k ≤ i + d, ObsPoint(σ1, k), and for any (σ2, l) if

ObsEqREO
((σ1, k), (σ2, l)), then there exists j s.t. l − d ≤ k ≤ l and

(σ2, j) |= β.

Definition 19. Given a plant P , a diagnosis condition β, a recall R, a set

of observables EO, and a trace σ1 such that for some i ≥ 0, (σ1, i) |= β,

we say that FiniteDel(A, β) is trace diagnosable in (σ1, i) iff there exists

k ≥ i s.t. ObsPoint(σ1, k) and for all (σ2, l) if ObsEqREO
((σ1, k), (σ2, l)),

then there exists j ≤ l and (σ2, j) |= β.

A specification that is trace diagnosable in a plant along all points of

all traces is diagnosable in the classical sense, and we say it is system diag-

nosable. The concept of trace diagnosability does not impose any specific

behavior to the diagnoser. However, it is an important concept that allows

us to better characterize and understand the specification and the system.

While this is a weaker definition than system diagnosability, it might be

the case that it is not satisfied by the plant. Therefore, we have 3 degrees

of diagnosability that can be defined in terms of trace diagnosability:

1. System Diagnosable: ∀(σ, i). trace diagnosable in (σ, i);

2. Trace Diagnosable: ∃(σ, i). trace diagnosable in (σ, i);

3. Non-Diagnosable: ∀(σ, i). not trace diagnosable in (σ, i).

5.6 Maximality

As shown in Figure 5.2, bounded- and finite-delay alarms are correct if

they are raised within the time-bound. However, there are several possi-

ble variations of the same alarm in which the alarm is active in different
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instants or for different periods. We address this problem by introducing

the concept of maximality. Intuitively, a maximal diagnoser is required

to raise the alarms as soon as possible and as long as possible (without

violating the correctness condition). Figure 5.5 shows the occurrence of

the diagnosis condition, and both a maximal and non maximal alarm, for

a bounded delay specification. Notice that the non maximal alarm raises

and lowers the alarm earlier than the maximal one. This behavior is still

correct, but introduces non-determinism in the behavior of the diagnoser.

β
A (Maximal)

A (Non-Maximal)

Figure 5.5: Maximal and Non-Maximal traces for Bounded Delay Alarm

Definition 20 (Maximality). D is a maximal diagnoser for an alarm con-

dition with alarm A in P iff for every trace σP of P , D(σP ) contains the

maximum number of observable points i such that
(
D(σP ), i

)
|= A; that is,

if
(
D(σP ), i

)
6|= A, then there does not exist another correct diagnoser D′

of P such that
(
D′(σP ), i

)
|= A.

By forcing a diagnoser to be maximal, we precisely characterize when a

diagnoser should raise the alarm. This makes it possible to compare two

different implementations of the same diagnoser: since the diagnoser is a

deterministic machine, we can check for equivalence of the input/output

behavior. This is particularly useful if we are interested in comparing

manually designed against automatically synthesized diagnosers, or if we

are using some code optimization/minimization techniques.

Theorem 3. Let D1 and D2 have the same recall, access to the same set

of observables, and be correct and maximal w.r.t. the alarm condition A in
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P . For each observable trace σP the alarm sequences of the two matching

traces coincide, i.e., σD1
|A = σD2

|A

Proof. Let us assume that there is a state at time i in σD1
s.t. the two

diagnosers behave differently, i.e., A1 6= A2, where A1 = σD1
|A[i] and A2 =

σD2
|A[i]. Let us assume that A1 is true while A2 is false (the other case can

be shown by symmetry). Since D1 is correct (by assumption), it means

that the diagnosis condition occurred and also D2 needs to raise the alarm.

Since D2 is maximal, we know that if it did not raise the alarm either the

condition is not diagnosable or D2 is incorrect. D2 is correct by assumption,

and the condition is diagnosable, because it is diagnosable for D1 that has

the same observables and recall as D2.

5.7 Context

The use of Sampath’s definition of diagnosability (and similarly of system

diagnosability in this work), has lead to the problem that most systems are

not (system) diagnosable. This is usually the result of some uncontrollable

situation that is needed in order to disambiguate a critical pair. A typical

example is the case of a broken light-bulb connected to a light switch.

Unless we try to turn the light on, we are unable to understand whether it

is broken. If the action of turning the light on is free to never happen, we

have a non (system) diagnosable situation. In [137] the concept of indicator

events is used to deal with this problem. Indicator events are observable

events that are required to occur after the fault, to limit the scope of the

diagnosability analysis (called I-diagnosability in [137]). In our example,

the indicator event would be the toggling of the light-switch. The definition

of the indicator events is quite restrictive, since it requires the indicator

events to be known up-front, and associated with the faults. Our definition

of trace diagnosability solves this problem, since the designer does not need
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to specify which are the indicators events. If the action of switching the

light on is observable, the system is trace diagnosable. In particular, the

traces in which we switch on the light are diagnosable.

However, if the action of switching the light is not observable, the sys-

tem is non-diagnosable (neither system or trace). Clearly, if we add the

assumption that every 10 seconds somebody will turn on the light, then

we end up with a system diagnosable situation.

It is quite common to describe the plant with all its possible behaviors,

although the operational context in which the plant will work might restrict

those behaviors. Two common examples are qualitative considerations and

contract based design.

In the design of safety critical systems, we use components and archi-

tectures that have a very low failure rate. Therefore, the chances of several

components failing at the same time becomes extremely unlikely. In this

sense, we can use these qualitative considerations in order to constraint the

execution of our system, and exclude traces in which, for example, three or

more faults occur. By doing this we are removing traces from the system

and potentially improving its diagnosability.

Another example of operational context is given by contract based de-

sign [57]. In this design methodology, each component is equipped with

some assumptions it expects from (and needs to guarantee to) the compo-

nents to which it is connected. Contract based design tries to encourage

components re-use. Therefore, we want to model the component in a gen-

eral way, and then check whether the behavior of the other components can

restrict the operational context. The example of the light being switched

on every 10 seconds can be seen as a contract based design example, in

which the environment of the component guarantees that the switching

signal will be issued every 10 seconds.

The operational context (context) of the plant P is a subset of the traces
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of the plant: C ⊆ Σ(P ). This is equivalent to defining a modified plant P ′

that has the given language. However, from an operational point of view,

it is usually simpler to keep the same model and add external constraints.

Given a context C, the concepts of diagnosability, correctness, complete-

ness, and maximality can be refined w.r.t. C, by simply considering only

traces in C instead of traces in Σ(P ).

5.8 Chapter Summary

In this chapter, we discussed how to formally specify alarms for the FDI.

We defined the concepts of diagnosis condition, delay, and alarm condi-

tion. In order to capture the reasoning capabilities of the diagnoser, we

formally characterize the relation between recall and observability. In turn,

this required us to introduce the concept of diagnosability, in order to un-

derstand when an alarm specification can be satisfied. We discussed the

classical definition of system diagnosability and, to overcome its limita-

tions, we introduced the concept of trace diagnosability. In order to guar-

antee a deterministic input/output behavior of the diagnoser, we introduce

the concept of maximality. Finally, we discuss how to impose additional

operational constraints on the FDI by using a context.
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ASLK

In this chapter, we present the Alarm Specification Language with Epis-

temic operators (ASLK). The goal of ASLK is to allow designers to for-

mally specify the alarms conditions covering all relevant aspects such as

completeness, correctness, delays, maximality, and context. The seman-

tics of each alarm specification can then be encoded into temporal epis-

temic logic. This allows us to apply automated reasoning techniques on

the specification, and verify whether a model satisfies a given specification

(model-checking).

We start by describing how to capture diagnosis and alarm conditions

using LTL with past operators (Section 6.1). Afterwards, we remark that

trace diagnosability and maximality cannot be captured by using a for-

malization based on LTL. To capture these two concepts, we rely on the

temporal epistemic logic KL1 (Section 6.2). The intuition is that this logic

enables us to reason on set of observationally equivalent traces instead

that on single traces (like in LTL). We show how this logic can be used to

specify diagnosability, define requirements for non-diagnosable cases and

express the concept of maximality. All these information are combined

within the specification (Section 6.3). The availability of a logical ground-

ing makes it possible to apply automated reasoning to perform validation
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and verification, as shown in Section 6.4. In Section 6.5, we provide exam-

ples of ASLK specifications.

The contributions of this chapter are ASLK , its mapping on top of

temporal epistemic logic, and its application on several examples. This

extends the results presented in [34] by considering the problem of recall.

Extended examples from both [34] and [32] are also presented.

6.1 Diagnosis and Alarm Conditions as LTL

Table 6.1: Alarm conditions as LTL (ASL): Correctness and Completeness

Alarm Condition Correctness Completeness

ExactDel(A, β, d) G(xAy → Y dβ) G(β → Xd
xAy)

BoundDel(A, β, d) G(xAy → O≤dβ) G(β → F≤dxAy)

FiniteDel(A, β) G(xAy → Oβ) G(β → F xAy)

Let P be a set of propositions representing either faults, events or el-

ementary conditions for the diagnosis. Let p ∈ P , then the set DP of

diagnosis conditions over P is any formula β built with the following rule:

β ::= p | β ∧ β | ¬β | βSβ | Oβ | Y β

In practice, we are interested in safety properties, (i.e., in prefix-closed

properties [8]) therefore the definition of β could be slightly extended to

include other LTL operators, or use a different formalism for safety prop-

erties. We focus on past LTL for clarity, simplicity, and availability of

tools.

Table 6.1 gives the LTL characterization of the Alarm Specification Lan-

guage (ASL). The name of each alarm condition (ExactDel, BoundDel,

and FiniteDel) is associated with the LTL encoding of the concepts of

correctness and completeness:
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Correctness the first conjunct, says that whenever the diagnoser raises

an alarm, the fault must have occurred;

Completeness the second conjunct, encodes that whenever the fault oc-

curs, the alarm will be raised.

In the following, for simplicity, we abuse notation and indicate with ϕ

both the alarm condition and the associated LTL; for an alarm condition

ϕ, we denote by Aϕ the associated alarm variable A, and with τ(ϕ) the

following formulas, that characterize the temporal behavior of the delay:

- τ(ϕ) = Y dβ for ϕ = ExactDel(A, β, d);

- τ(ϕ) = O≤dβ for ϕ = BoundDel(A, β, d);

- τ(ϕ) = Oβ for ϕ = FiniteDel(A, β).

when clear from the context, we use A and τ instead of Aϕ and τ(ϕ).

6.2 Diagnosability and Maximality as KL1

To know if the diagnoser is complete and correct, we only need to look at

the current trace. Therefore, LTL is sufficient to capture those concepts.

However, the concepts of diagnosability and maximality require us to con-

sider sets of observationally equivalent traces. For this reason, LTL is not

sufficient anymore, and we need a more expressive logic. In particular, we

decided to use the temporal epistemic logic KL1 (Section 2.4).

The semantics of Ki is given in terms of the accessibility relation ∼i for

agent i. Given a recall R and a set of observable Eo for the diagnoser Di,

the accessibility relation ∼i coincides with the observational equivalence

relation ObsEqREO
(i.e., ∼i≡ ObsEqREO

– Definition 12).
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Table 6.2: Diagnosability

Alarm Condition Diagnosability

ExactDel(A, β, d) G(β → Xd
xKY

dβy)

BoundDel(A, β, d) G(β → F≤dxKO
≤dβy)

FiniteDel(A, β) G(β → F xKOβy)

Multiple diagnosers (Di, · · · , Dj) can co-exist with access to different

observables and recall. This allows us to abstract the specification lan-

guage from the details of observability and recall of the diagnoser, and

experiment with different types of diagnosers while keeping the specifica-

tion unchanged. For example, consider a perfect recall diagnoser D1 and a

bounded recall 5 diagnoser D2. We can write properties that relate their

knowledge: G(K1ϕ→ K2ϕ). In the rest of the chapter we simply write K

when the details of the diagnoser are not relevant.

6.2.1 Diagnosability as KL1

The definition of completeness for ASL holds only if the plant is system

diagnosable. In order to weaken this condition, we need to show how to

encode diagnosability as a KL1 property.

This encoding is independent of the recall and observability of the diag-

noser, since these information are embedded in the semantics of the modal

operator K. Moreover, this provides us with a way of performing both

system and trace diagnosability tests.

Table 6.2 shows the encoding of diagnosability as a temporal epistemic

property. Intuitively, we say that every time that the diagnosis condition

occurs, the diagnoser knows that it has occurred after a certain delay (that

depends on the alarm condition type). Due to the asynchronous nature

of our setting, we require the knowledge operator to hold during an ob-

servation point. In order to test for system diagnosability, we will check

74



6.2. DIAGNOSABILITY AND MAXIMALITY AS KL1

whether the formula holds for all traces of the system, e.g.:

P |= G(β → F xKOβy)

For example, the diagnosability test for ExactDel(A, β, d) says that

it is always the case that whenever β occurs, exactly d steps afterwards,

the diagnoser knows β occurred d steps earlier. Since K is defined on

observationally equivalent traces, the only way to falsify the formula would

be to have a trace in which β occurs, and another one (observationally

equivalent at least for the next d steps) in which β did not occur; but this

is in contradiction with the definition of diagnosability (Definition 13).

Table 6.3: Non-diagnosability.

Alarm Condition Non-Diagnosability

ExactDel(A, β, d) G(β → Xd¬xKY dβy)

BoundDel(A, β, d) G(β → G≤d¬xKO≤dβy)
FiniteDel(A, β) G(β → G¬xKOβy)

If we obtain a counter-example to the system diagnosability, we are

interested in understanding whether the plant is trace diagnosable. This

means finding some traces and points that are diagnosable. To do so we

try to prove that every trace and point is not trace diagnosable by negating

the right hand side of the system diagnosability test (Table 6.3):

P |= G(β → G≤d¬xKO≤dβy)

If the plant satisfies the property, it means that the alarm condition is non-

diagnosable in every trace and point. A counter-example to the property

is a witness of a trace and point that are trace diagnosable.

Finally, note that the formulation of diagnosability is the same for both

system diagnosability and trace diagnosability. If we are interested in sys-

tem diagnosability, we verify that all traces and points satisfy the condition.

Whereas, for trace diagnosability, we just check whether a trace in a point

satisfies the property.
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Table 6.4: Trace Completeness.

Alarm Condition Trace Completeness

ExactDel(A, β, d) G( (β ∧Xd
xKY

dβy) → Xd
xAy)

BoundDel(A, β, d) G( (β ∧ F≤dxKO≤dβy) → F≤dxAy)

FiniteDel(A, β) G( (β ∧ F xKOβy) → F xAy)

Trace Completeness If the alarm condition for the plant is not system

diagnosable, we cannot show that the diagnoser is complete using the LTL

specification from Table 6.1, since any critical pair would be a counter-

example to completeness. Therefore, we propose to use the definition of

diagnosability to restrict the completeness on diagnosable traces. Since we

are using LTL, we can imagine that we are considering one trace at the

time. If we are in a point of a trace that is trace diagnosable, we require

the diagnoser to be complete. A counter-example to this property, when

checked on the plant and diagnoser, is a trace that is diagnosable but for

which the diagnoser did not raise the alarm:

D ⊗ P |= G((β → F≤dxKO
≤dβy)→ (β → F≤dxAy))

In Table 6.4 we show the formulation of trace completeness, in which we

combined completeness and diagnosability. Notice that we simplify the

expressions by rewriting the two implications into a conjunction according

to the rule: (A→ B)→ (A→ C)⇒ (A ∧B)→ C.

6.2.2 Maximality as KL1

A maximal diagnoser will raise the alarm as soon as it is possible to know

the diagnosis condition, and the alarm will stay up as long as possible. The

property xKτy → xAy encodes this behavior (Table 6.5):

Theorem 4. D is maximal for ϕ in P iff D ⊗ P |= G(xKτy → xAy).
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Table 6.5: Maximality

Alarm Condition Maximality

ExactDel(A, β, d) G(xKY
dβy → xAy)

BoundDel(A, β, d) G(xKO
≤dβy → xAy)

FiniteDel(A, β) G(xKOβy → xAy)

β
KO≤4β

A (Maximal)
A (Non-Maximal)

Figure 6.1: Example of Maximal and Non-Maximal traces

Proof. ⇒) Suppose D is maximal and by contradiction D⊗P 6|= G(xKτy →
xAy). Thus, there exists a trace σP of P and i ≥ 0 such that D(σP )×σP , i |=
(xKτy ∧¬xAy) (where D(σP ) is the diagnoser trace matching σP as defined

in Definition 7). By Definition 10 of x·y, i is an observation point. Let

i be the j-th observation point of σP . Consider D′ obtained by D(σp)

converting the trace into a transition system using a sink state so that D′

is deterministic and setting xAy to true only in the state D(σP )[j] (thus

triggering A in j and setting it to false at the next observation point). For

every trace σ′P of P matching with D′(σP ), obs(σ′P ) = obs(σP ), and thus

σ′P , i |= τ (since D(σP ) × σP , i |= xKτy). Therefore D′ |= G(xAy → τ)

contradicting the hypothesis.

⇐) Suppose D ⊗ P |= G(xKτy → xAy) and by contradiction D is not

maximal for ϕ in P . Then there exists a trace σP of P such that D(σP ), i 6|=
xAy and there exists another diagnoser D′ of P such that D′(σP ), i |= xAy

and D′ ⊗ P |= G(xAy → τ). Then, for some j, D(σP ) ⊗ σP , j 6|= xAy,

D′(σP ) ⊗ σP , j |= xAy, and so D(σP ) ⊗ σP , j 6|= xKτy and σP , j |= τ . Then

there exists another trace σ′P of P and j′ such that ObsEq((σ′P , j
′), (σP , j))

and σ′P , j
′ 6|= τ . Since D′ is deterministic, D′(σ′P ) and D′(σP ) are equal up
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to position i, and soD′⊗P 6|= G(xAy → τ) contradicting the hypothesis.

Whenever the diagnoser knows that τ is satisfied, it will raise the alarm. An

example of maximal and non-maximal alarm is given in Figure 6.1. Note

that according to our definition, the set of maximal alarms is a subset of

the non-maximal ones.

The concepts of maximality and trace completeness are related, but dif-

ferent concepts. In maximality, we are not only testing that the diagnoser

will raise the alarm, but also that it will do it maximally (as early and as

long as possible). A diagnoser can be trace complete by raising the alarms

in all situations that are diagnosable, but do so with some delay or in a

non-maximal way.

Introspection A property related to maximality is the capability of the

diagnoser to justify the raising of the alarm. This is a property that has

theoretical interest, and it is a stronger version of correctness that shows

that the diagnoser is correct and it did not guess the raising of the alarm.

This property is guaranteed by construction for any correct diagnoser, as

shown in the following theorem.

Theorem 5. Given a diagnoser D and a plant P , for each alarm A of D,

with temporal condition τ , if D is correct for A it holds that:

D ⊗ P |= G(xAy → xKτy)

Thus, whenever the diagnoser raises an alarm, it knows that the diagnosis

condition has occurred.

Proof. We assume by contradiction that the G(xAy → xKτy) is not satisfied.

Therefore, there exist σ and i such that D(σ)⊗ σ, i |= xAy ∧ ¬xKτy (where

D(σP ) is the diagnoser trace matching σP as defined in Definition 7), which

is equivalent to xAy ∧ ¬Kτ (by Definition 10 of x·y). Thus, (σ, i) |= τ by
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Table 6.6: ASLK specification patterns among the four dimensions: Diagnosability ,

Maximality , Completeness and Correctness .

Delay Maximality = False Maximality = True

D
ia
g

=
S
y
st
em ExactDel

G(xAy → Y dβ) ∧ G(β → Xd
xAy) G(xAy → Y dβ) ∧ G(β → Xd

xAy) ∧
G(xKY

dβy → xAy)

BoundDel
G(xAy → O≤dβ) ∧ G(β → F≤dxAy) G(xAy → O≤dβ) ∧ G(β → F≤dxAy) ∧

G(xKO
≤dβy → xAy)

FiniteDel
G(xAy → Oβ) ∧ G(β → F xAy) G(xAy → Oβ) ∧ G(β → F xAy) ∧

G(xKOβy → xAy)

D
ia
g

=
T
ra
ce

ExactDel
G(xAy → Y dβ) ∧ G(xAy → Y dβ) ∧

G( (β → Xd
xKY

dβy) → (β → Xd
xAy)) G( (β → Xd

xKY
dβy) → (β → Xd

xAy)) ∧

G(xKY
dβy → xAy)

BoundDel
G(xAy → O≤dβ) ∧ G(xAy → O≤dβ) ∧

G( (β → F≤dxKO
≤dβy) → (β → F≤dxAy)) G( (β → F≤dxKO

≤dβy) → (β → F≤dxAy)) ∧

G(xKO
≤dβy → xAy)

FiniteDel
G(xAy → Oβ) ∧ G(xAy → Oβ) ∧

G( (β → F xKOβy) → (β → F xAy)) G( (β → F xKOβy) → (β → F xAy)) ∧

G(xKOβy → xAy)

correctness of D. In order for the ¬Kτ to hold, we need another trace

σ′ and j s.t. ObsEq((σ, i), (σ′, j)) and (σ′, j) |= ¬τ . By definition, the

diagnoser is deterministic, thus we know that for σ, σ′ at points i, j we will

have the same value of A. Therefore, D(σ′)⊗ (σ′, j) |= xAy ∧¬τ so that D

is not correct, thus reaching a contradiction.

6.3 ASLK Specifications

The formalization of ASLK (Table 6.6) is obtained by extending ASL (Ta-

ble 6.1) with the concepts of maximality, diagnosability and trace com-

pleteness. Several simplifications are possible. For example, in the case

Diag = Trace, we do not always need to verify the completeness due to

the following result:
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Theorem 6. Given a diagnoser D for a plant P and a trace diagnosable

alarm condition ϕ, if D is maximal for ϕ, then D is complete.

Proof. (ExactDel) For all σ, i if σ, i |= (β → Xd
xKY

dβy), then by using

the maximality assumption, we know that σ, i |= (β → Xd
xAy); thus,

(σ, i) |= (β → Xd
xKY

dβy) → (β → Xd
xAy). Similarly we can prove

BoundDel and FiniteDel.

As a corollary of Theorem 6, the same can be applied also for system di-

agnosable alarm conditions if P is diagnosable, since system diagnosability

implies trace diagnosability:

Theorem 7. Given an alarm condition for the system diagnosable case,

and a diagnoser D for a plant P , if D is maximal for ϕ and ϕ is diagnosable

in P then D is complete.

Proof. The theorem follows directly from Theorem 6 and the fact that if

D is complete for a trace diagnosable alarm condition that is system diag-

nosable, then D is also complete for the corresponding system diagnosable

alarm condition.

This Theorem is interesting because it tells us that if a specification that

was required to be system diagnosable is indeed system diagnosable, then

we can just check whether the diagnoser is maximal and avoid performing

the completeness test.

Theorem 8. For all trace diagnosable and non-maximal ExactDel spec-

ifications, completeness can be replaced by maximality. Formally, for all

σ, σ |= G((β → Xd
xKY

dβy)→ (β → Xd
xAy)) iff σ |= G(xKY

dβy → xAy)
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Table 6.7: ASLK with simplified patterns for Diag = Trace

Template Maximality = False Maximality = True

D
ia
g

=
S
y
st
em ExactDel

G(xAy → Y dβ) ∧ G(β → Xd
xAy) G(xAy → Y dβ) ∧ G(β → Xd

xAy)

G(xKY
dβy → A)

BoundDel
G(xAy → O≤dβ) ∧ G(β → F≤dxAy) G(xAy → O≤dβ) ∧ G(β → F≤dxAy) ∧

G(xKO
≤dβy → A)

FiniteDel
G(xAy → Oβ) ∧ G(β → F xAy) G(xAy → Oβ) ∧ G(β → F xAy) ∧

G(xKOβy → A)

D
ia
g

=
T
ra
ce

ExactDel
G(xAy → Y dβ) ∧ G(xAy → Y dβ) ∧
G(xKY

dβy → A) G(xKY
dβy → A)

BoundDel
G(xAy → O≤dβ) ∧ G(xAy → O≤dβ) ∧

G((β ∧ F≤dxKO
≤dβy )→ F≤dxAy) G(xKO

≤dβy → A)

FiniteDel
G(xAy → Oβ) ∧ G(xAy → Oβ) ∧
G((β ∧ F xKOβy )→ F xAy) G(xKOβy → A)

Proof.

σ, i |=((β → Xd
xKY

dβy)→ (β → Xd
xAy)) iff

σ, i |=((β ∧Xd
xKY

dβy)→ Xd
xAy) iff

σ, i+ d |=((Y dβ ∧ xKY
dβy)→ xAy) iff

σ, i+ d |=((xY
dβ ∧KY dβy)→ xAy) iff

σ, i+ d |=(xKY
dβy → xAy)

Therefore, we can conclude that for all i, σ, i |= ((β → Xd
xKY

dβy)→ (β →
Xd

xAy)) iff for all j ≥ d, σ, j |= (xKY
dβy → xAy). We conclude noting that

for j < d, Y dβ is false and therefore σ, j |= (xKY
dβy → xAy).

After applying the simplifications specified in Theorem 6 and Theorem 8

and the equivalence xφy → xψy ≡ xφy → ψ, we obtain the table in Table 6.7,

where the patterns in the lower half (Diag = Trace) have been simplified.

Operational Context To encode the operational context in ASLK , we sim-

ply limit the set of traces on which we evaluate the KL1 properties. For-
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mally, a context C is any LTL formula expressed on the state variables and

events of the plant P .

For a specification ϕ, instead of verifying that D ⊗ P |= ϕ, we verify

that D ⊗ P |= C → ϕ. This is equivalent to verifying the specification on

a restricted plant P ′ that has the same language as the context, since the

context is expressed only on variables of the plant.

6.4 Validation and Verification of ASLK

The formal characterization of ASLK makes it possible to apply formal

methods for the verification and validation of a ASLK specification.

In verification, we check that a candidate diagnoser fulfills a set of re-

quirements.

Definition 21. Let D be a diagnoser for alarms A and plant P . We say

that D satisfies a set A of ASLK specifications iff for each ϕ in A there

exists an alarm Aϕ ∈ A and D ⊗ P |= ϕ.

To perform this verification steps, we need a model checker able

to deal with the semantics of the plant-FDIR combination (asyn-

chronous/synchronous, bounded/perfect recall, finite/infinite state, etc.).

If the specification falls in the pure LTL fragment (ASL) we can verify it

with an LTL model-checker, otherwise, we need a model-checker for KL1.

Techniques for model-checking KL1 will be discussed in Chapter 11.

In validation we verify that the requirements capture the interesting

behaviors and exclude the spurious ones, before proceeding with the design

of the diagnoser. The most typical validation check is diagnosability. We

can check diagnosability using temporal epistemic logic (as described in

Section 6.2.1) or with other techniques (as we will discuss in Chapter 7).

In this section, we provide a more general discussion of validation, in which
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we use the temporal epistemic logic characterization of the specification to

perform automated reasoning.

Validation

Given a specification A for our diagnoser, we want to make sure that it

captures the designer expectations. Known techniques for requirements

validation [56] include checking their consistency, and their realizability,

i.e., whether they can be implemented on a given plant. By construction,

an ASLK specification is always consistent, i.e., there cannot be internal

contradictions. This is due to the fact that alarm specifications do not in-

teract with each other, and each alarm specification can always be satisfied

by a plant. Instead, realizability reduces to checking diagnosability.

Often we want to show that there exists some condition under which

the alarm might be triggered (possibility), and some other conditions that

require the alarm to be triggered (necessity). An alarm that is always (or

never) triggered is not useful. Moreover, we might want to identify as-

sumptions on the environment of the diagnoser (including details on the

plant) that might have an impact on the the alarms. For example, if we

have a single fault assumption for our system, an alarm that implicitly de-

pends on the occurrence of two faults will never be triggered. Similarly, our

assumptions on the environment might provide some link between the be-

havior of different components, or dynamics of faults and thus characterize

the relation between different alarms.

The operational context C, expressed as an LTL formula, can be empty,

or include detailed information on the behavior of the environment and

plant, since throughout the different phases of the development process,

we have access to better versions of the plant model, and therefore the

analysis can be refined.

Checking possibility means checking that the alarms can be eventually
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activated, but also that they are not always active. This means that for a

given alarm condition ϕ ∈ A, we are interested in verifying that there are

two traces σ, σ′ ∈ C s.t. :

σ |= F xAϕy and σ′ |= F¬xAϕy

This can be done by checking the (LTL) unsatisfiability of

(C ∧ ϕ)→ G¬xAϕy and (C ∧ ϕ)→ GxAϕy

Checking necessity provides us a way to understand whether there is

some correlation between alarms. This, in turns, makes it possible to

simplify the model, or to guarantee some redundancy requirement. To

check whether Aϕ′ is a more general alarm than Aϕ (subsumption) we

check whether

(C ∧ ϕ ∧ ϕ′)→ G(xAϕy → xAϕ′y)

is valid. An example of subsumption of alarms is given by the definition of

maximality: any non-maximal alarm subsumes its corresponding maximal

version. Finally, we can verify that two alarms are mutually exclusive by

checking the validity of (C ∧ ϕ ∧ ϕ′)→ G¬(xAϕy ∧ xAϕ′y).

To clarify the concepts presented here, we apply a necessity check on

our running example. In the Battery-Sensor, we have two alarms specified

on PSU1, one ExactDel and one FiniteDel:

• ExactDelK(PSU1Exact2, βPSU1, 2, T race, True)

• BoundDelK(PSU1Bound, βPSU1, 2, T race, True)

Our goal is to show that PSU1Exacti is more specific than (is subsumed by)

PSU1Bound. This means that for any plant and diagnoser, the following

holds:

D ⊗ P |= (ϕPSU1Exact2
∧ ϕ′PSU1Bound

)→ G(xPSU1Exact2y → xPSU1Boundy)
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Since we want to show this for any plant and diagnoser, this reduces to

checking the validity of

(ϕPSU1Exact2
∧ ϕPSU1Bound

)→ G(xPSU1Exact2y → xPSU1Boundy)

By looking at Table 6.7 we can see the definition of both alarms:

• G(xPSU1Exactiy → Y iβPSU1) ∧G(xKY
iβPSU1y → xPSU1Exactiy)

• G(xPSU1Boundy → O≤CβPSU1) ∧G(xKO
≤CβPSU1y → xPSU1Boundy)

By renaming with PE = PSU1Exact2 and PB = PSUBound (for brevity)

and expanding the definitions of ϕPSU1Exact2
∧ ϕPSU1Bound

we have that

(G(xPEy → Y 2β) ∧G(xKY
2βy → xPEy) ∧

G(xPBy → O≤2β) ∧G(xKO
≤2βy → xPBy))

→ G(xPEy → xPBy)

We can apply Theorem 5 (Introspection of the Diagnoser), and therefore

write:

(G(xPEy → Y 2β) ∧G(xKY
2βy → xPEy) ∧

G(xPBy → O≤2β) ∧G(xKO
≤2βy → xPBy) ∧

G(xPEy → xKY
2βy) ∧G(xPBy → xKO

≤2βy))

→ G(xPEy → xPBy)

To prove that the above formula is valid we prove that its negation is

unsatisfiable:

(G(xPEy → Y 2β) ∧G(xKY
2βy → xPEy) ∧

G(xPBy → O≤2β) ∧G(xKO
≤2βy → xPBy) ∧

G(xPEy → xKY
2βy) ∧G(xPBy → xKO

≤2βy))

∧¬G(xPEy → xPBy)
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The first part of this formula is composed by conjuncts in the form Gψ.

This means that a counter examples is a trace for which each state satisfies

ψ. Moreover, we need one of these states to satisfy (PE ∧¬xPBy). There-

fore, to prove the unsatisfiable of the above formula, we can just prove that

no state exists that satisfies:

(xPEy → Y 2β) ∧ (xKY
2βy → xPEy) ∧

(xPBy → O≤2β) ∧ (xKO
≤2βy → xPBy) ∧

(xPEy → xKY
2βy) ∧ (xPBy → xKO

≤2βy))

∧xPEy ∧ ¬xPBy

We show this by a contradiction since:

· · · ∧ xPEy ∧ ¬xPBy

ObsPoint Def. · · · ∧ x>y ∧ PE ∧ ¬PB

Theorem 5 on PE · · · ∧ x>y ∧ PE ∧ ¬PB ∧KY Y β

Maximality of PB · · · ∧ x>y ∧ PE ∧ ¬PB ∧KY Y β ∧ ¬KO≤2β

†Def. of ¬K · · · ∧ x>y ∧ PE ∧ ¬PB ∧KY Y β ∧ ¬O≤2β

Def. of O≤n · · · ∧ x>y ∧ PE ∧ ¬PB ∧KY Y β ∧ ¬(β ∨ Y β ∨ Y Y β)

K Axiom (Kφ→ φ) · · · ∧ x>y ∧ PE ∧ ¬PB ∧ Y Y β ∧ ¬β ∧ ¬Y β ∧ ¬Y Y β

Thus reaching a contradiction between Y Y β and ¬Y Y β. In the step

marked with † we need to show that two observationally equivalent traces

exists s.t. one satisfies O≤2β and the other ¬O≤2β; therefore, we only need

to show that one of the two (namely ¬O≤2β) does not exist.

This example shows that by defining a semantics for ASLK based on

temporal epistemic logic, we can apply automated satisfiability and model-

checking techniques to prove properties of interest on a given alarm speci-

fication.
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6.5 Examples

Battery Sensor System

An ASLK specification is built by instantiating the patterns defined in Ta-

ble 6.6. For example, we write ExactDelK(A, β, d, Trace, True) for an

exact-delay alarm A for β with delay d, that satisfies the trace diagnos-

ability property and is maximal.

ExactDelK(PSU1Exacti , βPSU1, i, T race, True)

BoundDelK(PSU1Bound, βPSU1, C, Trace, True)

BoundDelK(BS, βBS, DC, Trace, True)

FiniteDelK(Discharged, βDepleted, T race, False)

FiniteDelK(B1Leak, βBattery1, System, True)

Figure 6.2: ASLK Specification for the BSS

Figure 6.2 shows how we extend the specification for the Battery Sensor

System by introducing requirements on the diagnosability and maximality

of alarms. In particular, all the alarms that we defined are not system

diagnosable. Therefore, we need to weaken the requirements and make

them trace-diagnosable. The patterns are then converted into temporal

epistemic formulas as shown in Figure 6.3.

Alarm Formula

PSU1Exacti G(xPSU1Exactiy → Y iβPSU1) ∧ G(xKY
iβPSU1y → xPSU1Exactiy)

PSU1Bound G(xPSU1Boundy → O≤CβPSU1) ∧ G(xKO
≤CβPSU1y → xPSU1Boundy)

BS G(xBSy → O≤DCβBS) ∧ G(xKO
≤DCβBSy → xBSy)

Discharged G(xDischargedy → OβDeplated) ∧ G((βDeplated ∧ F xKOβDeplatedy )→ F xDischargedy)

B1Leak G(xB1Leaky → OβBattery1) ∧ G(βBattery1 → F xB1Leaky) ∧ G(xKOβBattery1y → xB1Leaky)

Figure 6.3: KL1 translation of ASLK patterns for the BSS

The Battery Leak is trace diagnosable but not system diagnosable. This

means that in general, we cannot detect the battery leak, but there is at

least one execution in which we can. In particular, this is the execution in
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which the mode becomes Secondary 2 when Battery 1 was charged, and

we can see the battery discharging, thus detecting the fault. Note that

to detect this fault, we need to recall the fact that previously the battery

was charged, and therefore a diagnoser with 0 recall would not be able

to detect this fault. To study the other faults, we setup an operational

context. In particular, we assume that at most one fault can occur. Under

this assumption, the sensor faults are trace diagnosable, since there is an

execution in which the device stops working because of a discrepancy in

sensor readings.

Lets assume that we are given a diagnoserD for our system, and we want

to verify that it satisfies the alarm specification, e.g., PSU1Exact under the

context of a single fault:

D ⊗ P |= G(count(faults) ≤ 1)→ [

G(xPSU1Exactiy → Y iβPSU1) ∧G(xKY
iβPSU1y → xPSU1Exactiy)]

where count(faults) ≤ 1 encodes the possibility for at most one fault to

occur at any given time1. We can also split the verification in two separate

verification tasks: correctness and maximality. In this way, correctness can

be verified using a simple LTL model-checker rather than an epistemic one:

D ⊗ P |= G(count(faults) ≤ 1)→ G(xPSU1Exactiy → Y iβPSU1)

Magicbox

A magicbox [90] is a grid-like structure, in which a ball is able to jump from

one cell to another according to a predefined pattern. The movement of the

ball is not observable directly, but only through two types of observation

points: row and columns. An observer on a row is able to understand when

the ball is in its row. However, the observer cannot say anything about the

1This encoding is weak, in the sense that multiple occurrence of different transient faults are allowed.
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C

B

A

0 1 2
X

Y

Figure 6.4: A simple magicbox.

distance of the ball, therefore no information on the column can be deduced

by this observer. Similarly, the column observers can tell when the ball

is in the given column, but nothing more. Our running example is the

magicbox in Figure 6.4. This is a 3x3 magicbox, with two observers. The

observer x is able to tell when the ball is in the row B, while the observer

y is able to tell when the ball is in the column 1. In our asynchronous

setting, this means that the events X = B and Y = 1 are observable. We

also assume that we have a starting state that is outside of the board, and

that the first transition places the ball in one of the possible cells, thus

giving us an initial observation. The trajectory of the ball is represented

by the arrows, e.g., from A0 the ball will go to B1. To keep the example

simple, we blocked the cell C2.

We want to develop a diagnoser that is able to detect the passage of

the ball through a certain cell, even if the cell is not observable by itself.

Although the ball path is predefined, there is non-determinism in the initial

location of the ball and in the possible non-deterministic transitions. For

example, from C0 the ball can either go to A0 or to B2.

We will come back to this toy example later on, since this provides

a simple way of generating scalable benchmarks of partially observable

systems. We can change the size of the grid, the number of transitions,

the number of non-deterministic transitions, constraint the initial position

of the ball, and change the observable rows and columns. Moreover, we
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can define several diagnosis and alarm conditions. The simplest diagnosis

conditions are by cell, e.g., βC1 = C1. This can be compared to fault

identification, in which we are interested in knowing exactly where the ball

is. However, we might loose specificity and say that we want to know if the

ball is in one of a given set of cells, e.g., the column A: βA = A0 ∨ A1 ∨ A2
(comparable to fault isolation).

In ASLK it is also possible to define temporal properties as diagnosis

condition. There are two ways of getting into B2, therefore, we might be

interested in knowing whether we arrived from C0 rather than from A1; this

can be expressed with the temporal condition βC0B2 = B2 ∧ Y (C0). This

shows how to define informative alarms.

Our example specification consists of the following alarms:

A = {

ϕ1 = ExactDelK(A(B1), βB1, 0, system, True),

ϕ2 = ExactDelK(A(C1), βC1, 0, trace, True),

ϕ3 = BoundDelK(A(B0), βB0, 2, system, True)

}

and we assume the diagnoser to have perfect recall. We now want to see

whether the alarm specifications are diagnosable (system or trace depend-

ing on the requirement).

For ϕ1 we need to check for system diagnosability: P |= G(βB1 →
xKβB1y). We obtain a counter-example in the initial state: we cannot

distinguish whether the ball is starting in B0 or B2. Therefore, there is

no diagnoser that is able to satisfy the specification ϕ1. This is a simple

example that shows why system diagnosability is often difficult to satisfy.

For ϕ2, we relax the diagnosability condition, and we only require trace

diagnosability. Notice, that this is necessary, since we have the same prob-

lem of uncertainty of the initial state between C1 and A1. To understand
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for which traces this specification is (trace) diagnosable, we test whether it

is non-diagnosable: i.e., P |= G(βC1 → ¬xKβC1y). The counter-example to

this property is the finite trace (B0, C1); therefore, the specification is trace

diagnosable. In particular, notice that the only other cell with the same

observation as C1 is A1 (i.e., ¬X ∧ Y ). C1 can be reached only from B2

that has observation X ∧ ¬Y , while A1 is reachable only from B1 that has

observation X ∧ Y . What this means is that we can always know whether

the ball is in C1 as long as we have (and recall) the previous observation. A

diagnoser with recall 1 would be sufficient. We can validate this intuition,

by using an operational context to exclude executions that start in C1, and

run a system diagnosability test: P |= ¬C1→ G(βC1 → xKβC1y)

Finally, we consider ϕ3. This specification is system diagnosable, since

we are allowed a delay of 2. Initially, we cannot distinguish starting in B0

or B2. However, on the next step, from B0 we can only reach A2 (with

observation ¬X ∧¬Y ), while from B2 we can only reach C1 (with observa-

tion ¬X ∧Y ). The question, therefore becomes whether 2 is the minimum

necessary delay for system diagnosability, or whether we can strengthen

it to 1. To check this, we run the following system diagnosability query:

P |= G(βB0 → F≤1
xKO

≤1βB0y). Since we obtain a positive answer, we can

strengthen our alarm specification and write:

ϕ′3 = BoundDelK(A(B0), βB0, 1, system, True)

6.6 Chapter Summary

In this chapter, we introduced ASLK , and its temporal epistemic logic

characterization. In Table 6.7 we summarized how the different alarm

specification requirements can be captured in ASLK . We discussed the

validation process that temporal epistemic logic characterization enables.

Finally, we define and discuss several specifications for both the Battery
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Sensor System, and the magicboxes.
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Diagnosability

Faults might not be detectable in a system. This might be due to a limited

number of observables, limited recall or by the nature of the system. Given

an alarm specification, it is important to verify whether there exists a

diagnoser that can satisfy it. This information is crucial during the design

phase, because it allows us to refine the specification early in the process.

The problem of whether a fault can be diagnosed (i.e., detected and

identified) is called diagnosability. We provided a formal characterization

of diagnosability in Section 5.4, and in Section 6.2.1 we discussed ways

of encoding the problem into temporal epistemic logic. In this chapter,

instead, we are interested in extending the problem of diagnosability to

a synthesis problem. The problem of observability synthesis (sometimes

called sensor placement) is the problem of optimizing the set of sensors

used while preserving (system) diagnosability.

In order to address this problem, we present a different technique that

is used to verify system diagnosability : the twin-plant approach. This

technique allows us to reduce the diagnosability test into an LTL model-

checking problem, making it easier to map the synthesis problem into a

parameter synthesis problem.

In Section 7.1 we extend the twin-plant construction in order to deal
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with different types of recall, and explain how to apply this construction to

the verification of alarm specifications. In Section 7.2 we use the twin-plant

construction to solve the problem of sensor placement. In particular, we

show how the problem can be reduced to a monotonic parameter synthesis

problem. By associating cost functions to the sensors, we can perform

multi-objective optimization and compute the Pareto optimal solutions.

An effective technique for solving monotonic parameter synthesis problems

is presented and evaluated.

The contributions of this Chapter are:

1. The mapping between alarm specifications (ASL) and twin-plant con-

struction;

2. The extension of the twin-plant construction to deal with bounded

recall;

3. An algorithm for computing the Pareto-optimal solutions of a mono-

tonic parameter synthesis problem (originally presented in [23]).

7.1 Verification via Twin-Plant

The twin plant approach was introduced in [101], and it is based on the

idea that disproving diagnosability requires finding a critical pair. In turn,

a critical pair can be seen as the execution of two copies of the plant that

have the same observable behavior. A critical pair occurs when one of the

two copies is in a state satisfying the diagnosis condition, while the other

is not. By forcing the observations to coincide, we perform pruning of the

search state, and let the model-checker explore only the pairs of traces that

share the same observations. The key advantage of this technique is the

possibility of using standard LTL model-checking tools [55] to perform the

diagnosability test. The cost of the technique is that we double the size of
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Figure 7.1: Twin-Plant Schema

the model (in the number of variables needed). Therefore, the twin-plant

might become too big to handle for the model-checker.

In this Chapter, we use the framework of synchronous transition sys-

tems, as done in [55, 26]. This makes it more intuitive to define concepts

such as bounded delay. In general, however, the composition of the twin-

plant must respect the composition semantics that will be used between

the plant and diagnoser: accounting for synchronicity, recall and observ-

ability. The results can be extended to the asynchronous case, but this is

left as future work.

7.1.1 Twin-Plant Construction

Given a partially observable plant P , the coupled twin plant (twin plant)

is obtained from P by making the synchronous product of two copies of

the plant (PL and PR) over the observable events:

Definition 22 (Twin-Plant). Let P = 〈V, Vo, T, I〉 be a partially observable

transition system. Let PL = 〈V L, V L
O , T

L, IL〉 and PR = 〈V R, V R
O , T

R, IR〉
be two copies of P s.t. all variables have been renamed. The twin-plant P 2
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is obtained by synchronous product of PL and PR:

P 2 = PL × PR

We refer to PL and PR as the left and right plant as shown in Figure 7.1.

In the composition above, the two plants are unrelated. We couple them

through their observations by adding an arbiter component that raises a

flag whenever the two plants have matching observations. The arbiter

Sobs eq = 〈{obs eq}, V L
O ∪ V R

O , T, I〉, where T and I define the invariant:

obs eq ↔
∧
o∈VO

oL = oR

Definition 23 (Coupled Twin-Plant). The coupled twin-plant is a twin-

plant with an additional arbiter component:

P 2 × Sobs eq = PL × Sobs eq × PR

The traces in which the observations from both plants match (i.e., obs eq

is set to true) are candidates for being critical pairs.

A simple way of thinking about the twin-plant construction is to think

about the left and right plant as having different roles. One of them, e.g.

the left plant, simulates the actual state of the plant during an execution.

The other, e.g. the right plant, simulates a possible estimation done by the

diagnoser and compatible with the observations. A trace σ of P 2 can be

decomposed in the two traces 〈σL, σR〉 of PL and PR respectively. Every

trace will thus give us a concrete execution of the plant and an educated

guess of a diagnoser. Intuitively, a plant is diagnosable for a given condition

(e.g., a fault) if for every trace σ of P 2 in which obs eq holds, if σL contains

the fault also σR contains the fault. If this is not the case, then we have

found a critical pair, in particular 〈σL, σR〉 is a critical pair, since both σL

and σR have the same observable behavior, but disagree on the occurrence

of the fault. As discussed in Section 5.2, we are interested in bounding the
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delay of the detection and thus we do not require that the two traces have

the same observable behavior forever.

7.1.2 Alarm Conditions Verification

To verify system diagnosability using the twin-plant, we need to create

a model-checking query that captures our target alarm condition. We

associate an LTL property to each alarm condition.

To account for the delay in diagnosis, a critical pair does not require

that the two traces are observationally equivalent forever, but only for a

certain amount of time after the occurrence of β. Table 7.1 summarizes

the LTL properties associated with checking diagnosability using the twin-

plant for different types of alarms. A critical pair is a trace of the coupled

Table 7.1: Twin-Plant Diagnosability – Perfect Recall

Exact Delay G(βL → Xd(H(obs eq)→ Y dβR)

Bounded Delay G(βL → F≤d(H(obs eq)→ O≤dβR))

Finite Delay G(βL → F (H(obs eq)→ OβR))

twin-plant in which obs eq holds for sufficiently long after the occurrence

of the condition on one of the twins, while the condition does not occur

in the other twin. A twin-plant has a critical pair if there is a trace that

violates one of the properties of Table 7.1:

Exact Delay σ |= F (βL ∧Xd(H(obs eq) ∧ Y d¬βR): β occurs on the left

plant, both traces are still observationally equivalent after d steps, but

the right plant does not satisfy β at the same time of the left plant.

Since the X and Y cancel each other out, we could move the ¬βR out,

obtaining:

F (βL ∧ ¬βR ∧Xd(H(obs eq))

but we maintain the original formulation for symmetry with the other

delays.
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Bounded Delay σ |= F (βL ∧G≤d(H(obs eq) ∧H≤d¬βR))

β occurs on the left plant and for any future point within the delay,

the two traces are observationally equivalent. However, it is never the

case that βR holds within the delay.

Finite Delay σ |= F (βL ∧G(H(obs eq) ∧H¬βR))

we have an occurrence of the diagnosis condition β on the left plant

(βL) and the whole trace σ is obs eq. At the same time, on the right

plant β never holds. This can be simplified as:

F (βL ∧G(H(obs eq ∧ ¬βR)))

Using the result from Theorem 1, we can rewrite Sampath’s diagnos-

ability test for a given delay d as:

P 2 × Sobs eq |= G(βL → F≤d(H(obs eq)→ OβR))

7.1.3 Bounded Recall

The classical twin-plant construction [101, 137] enforces perfect recall,

meaning that the observations on the plants are synchronized from the

beginning of time, and there is no way to forget what has happened. We

capture this in the verification properties (by imposing H(obs eq)) we re-

quire that the traces are observationally equivalent from the beginning of

the execution. This can be extended to enable the encoding of the proper-

ties for other types of recall. In particular, we consider clock semantics [98]

as a stronger version of bounded recall. In the clock semantics, in addi-

tion to the bounded recall, both plants have access to a global clock. This

provides an additional source of information, thus enabling a finer-grain

estimation of the state of the plant. In order of expressiveness, we have

bounded recall, clock semantics, and perfect recall.
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The diagnosability properties for clock semantics, are presented in Ta-

ble 7.2, whereR ∈ [0,∞], indicates the recall. By assuming that H≤∞ ≡ H

we obtain a unified definition for perfect recall and clock semantics.

Table 7.2: Twin-Plant Diagnosability – Clock Semantics

Finite Delay G(βL → Xd(H≤R(obs eq)→ Y dβR)

Bounded Delay G(βL → F≤d(H≤R(obs eq)→ O≤dβR))

Finite Delay G(βL → F (H≤R(obs eq)→ OβR))

The clock-semantics discussed here comes from the fact that the plants

are in a synchronous composition. Even if there is no variable sharing,

both systems will evolve at the same speed. In order to talk about bounded

recall, we need to loose the synchronicity of the two plants.

To model the lack of memory of the plants, we would like them to be

able to start from any of their reachable states. This would remove the

synchronicity between the two systems. However, computing the reachable

state set is usually unfeasible or impossible (e.g., for infinite state systems).

Therefore, we encode this behavior by letting the plants evolve freely for

a non-deterministic amount of time, before starting the synchronization of

both plants. We add a non-deterministic flag loop to the plants. As long as

loop is true, the plant will remain (stutter) in the initial state. Once loop

becomes false, it will stay false, and the plant will start evolving according

to the transition relation.

Definition 24. (Ploop) Given a plant P , we obtain Ploop =

〈V P ∪ {loop}, V P
O ∪ {loop}, T loop, IP 〉, where:

T loop
∆
= (loop→

∧
v∈V P

v′ = v) ∧ (¬loop→ ¬loop′)

When talking about the twin-plant, we define loop as loopL ∨ loopR i.e.,

at least one of the plants is looping. Properties described in Table 7.3 will
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be considered only when both plants are not looping anymore:

Gϕ becomes G(¬loop→ ϕ)

Moreover, we add loopL, loopR to the observable set. Intuitively, this de-

scribes the fact that in a bounded recall system, we know how many ob-

servations we did so far. For example, we cannot consider a critical pair in

which the left plant has performed 3 observations and the right plant has

performed 5. This is normally captured by the semantics of H, but is lost

when we introduce the initial loops, therefore, we need to consider loop as

observable.

Table 7.3: Twin-Plant Diagnosability – Bounded Recall

Exact Delay G(¬loop ∧ βL → Xd(H≤R(obs eq)→ Y dβR)

Bounded Delay G(¬loop ∧ βL → F≤d(H≤R(obs eq)→ O≤dβR))

Finite Delay G(¬loop ∧ βL → F (H≤R(obs eq)→ OβR))

The formulation presented in Table 7.3 can be used for perfect recall, clock

semantics and bounded recall, by allowing the systems to perform initial

loop (bounded recall) or not (perfect recall and clock semantics), and by

considering H∞ ≡ H. By comparing Table 7.3 with Table 6.2 we can

see that the epistemic formulation and the LTL formulation follow the

same structure, with the constraint on the observability and recall being

captured by the K operator.

7.1.4 Formal Relation

The coupled twin-plant and LTL encodings from Table 7.3 capture the

definitions of diagnosability. First, we adapt the definitions of diagnosabil-

ity (Definitions 13, 14 and 16) to the synchronous context, in which every

point is an observation point.
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Definition 25 (Exact Delay (Synchronous Case)). Given a plant P , a

diagnosis condition β, a recall R and a set of observables O, we say that

ExactDel(A, β, d) is system diagnosable in P iff for all σ1, i s.t. σ1, i |= β

and for all σ2, j, if ObsEqRO((σ1, i+ d), (σ2, j + d)), then σ2, j |= β.

Theorem 9. Given a plant P , a diagnosis condition β, a recall R, and a

set of observables O, we say that ExactDel(A, β, d) is system diagnos-

able in P iff

R 6=∞) P 2
loop × Sobs eq |= G(¬loop ∧ βL → Xd(H≤R(obs eq)→ Y dβR)

R =∞) P 2 × Sobs eq |= G(βL → Xd(H(obs eq)→ Y dβR)

i.e., the coupled twin-plant constructed from P satisfies the Exact Delay

property from Table 7.1 (for perfect recall) or Table 7.3 for (bounded recall).

Proof. ⇒ (By contradiction) We assume that there is a trace of the twin-

plant that violates the property. This trace can be decomposed in

two traces σL,σR, and we know that there is a point i s.t. σL, i |= βL,

σR, i |= ¬βR, and that ObsEqRO((σL, i+d), (σR, i+d)). Thus, we reach

a contradiction. This direction of the proof works both for perfect

and bounded recall, with the minor change that for bounded recall,

we need to require that βL, i |= ¬loop, in order to be able to map the

critical pair into a real execution of the system, and not in an artifact

of the initial stuttering.

⇐ (By contradiction) We assume that there is a pair of pointed traces

(σ1, i) and (σ2, j) s.t. ObsEqRO((σ1, i+d), (σ2, j+d)) and σ1, i |= β but

σ2, j |= ¬β. We need to show that the two traces belong to the twin-

plant and cannot satisfy the LTL property, to do so, we distinguish

between perfect and bounded recall.
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Perfect Recall Due to the perfect recall and synchronicity assump-

tions, both traces must have the same length to be observation-

ally equivalent. Therefore, we deduce that i = j, and can see that

the trace representing (σ1, σ2) in the twin-plant violates the LTL

property.

Bounded Recall Due to the bounded recall, we cannot say anything

on the relative value of i and j1. Intuitively, to convert these traces

into traces of the twin-plant, we need to enforce the two traces to

have the same length. If j = i we are done, so we assume that

j < i (the other case is symmetric). We prefix σ2 with σi−jloop that is

a finite trace obtained by stuttering in the initial state i−j times.

The twin-plant trace is obtained as (σ1, σ
i−j
loopσ2), that violates the

LTL property, since σ, i |= βL ∧ ¬βR. Note that the recalled

fragments have the same length, i.e., |obsRO(σ1, i)| = |obsRO(σ2, j)|
otherwise the two traces would not be observationally equivalent

to begin with.

Definition 26 (Bounded Delay (Synchronous Case)). Given a plant P ,

a diagnosis condition β, a recall R, and a set of observables variables

O, we say that BoundDel(A, β, d) is system diagnosable in P iff forall

σ1, i s.t. σ1, i |= β there exists k s.t. i ≤ k ≤ i + d, and for all σ2, l, if

ObsEqRO((σ1, k), (σ2, l)), then there exists j s.t. l−d ≤ j ≤ l and σ2, j |= β.

Theorem 10. Given a plant P , a diagnosis condition β, a recall R, and a

set of observables O, we say that BoundDel(A, β, d) is system diagnos-

able in P iff

R 6=∞) P 2
loop × Sobs eq |= G(¬loop ∧ βL → F≤d(H≤R(obs eq)→ O≤dβR))

1In clock semantics we could make the same assumption as for perfect recall
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R =∞) P 2 × Sobs eq |= G(βL → F≤d(H(obs eq)→ O≤dβR))

i.e., the coupled twin-plant constructed from P satisfies the Bounded Delay

property from Table 7.1 (for perfect recall) or Table 7.3 (for bounded recall).

Proof. ⇒ (By contradiction) We assume that there is a trace of the twin-

plant that violates the property. This trace can be decomposed in two

traces σL,σR, s.t. there is a point i in which σL, i |= βL, a point k s.t.

ObsEqRO((σL, k), (σR, k)) and i ≤ k ≤ i+ d and a point i− d ≤ j ≤ k

s.t. σR, j |= ¬βR. Thus we reach a contradiction.

⇐ (By contradiction) We assume that there is a a pair of traces and points

(σ1, i), (σ2, l), and forall points k (i ≤ k ≤ i + d) s.t. σ1, i |= β,

ObsEqRO((σ1, k), (σ2, l)) and for all j (l − d ≤ j ≤ l) σ2, j |= ¬β.

Perfect Recall As done in the previous case, using the assumption of

synchronicity and perfect recall, we know that k = l. Therefore,

the trace of the twin plant is obtained by simply composing σ1

and σ2. Note that the index k indicates the point that satisfies

the F≤d and j is the point that satisfies O≤d.

Bounded Recall We cannot assume anything about the relative po-

sition of k and l. Therefore, we introduce stuttering in the initial

state until k = l. The twin-plant trace is obtained (for l < k) as

(σ1, σ
k−l
loopσ2). This trace does not satisfy the LTL specification,

thus reaching a contradiction.

Definition 27 (Finite Delay (Synchronous Case)). Given a plant P , a

diagnosis condition β, a recall R, and a set of observables O, we say that

FiniteDel(A, β) is system diagnosable in P iff for all σ1, i s.t. σ1, i |= β

then there exist k ≥ i s.t. for all σ2, l if ObsEqRO((σ1, k), (σ2, l)) then there

exists j ≤ l σ2, j |= β.
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Theorem 11. Given a plant P , a diagnosis condition β, a recall R, and a

set of observables O, we say that FiniteDel(A, β) is system diagnosable

in P iff

R 6=∞) P 2
loop × Sobs eq |= G(¬loop ∧ βL → F (H≤R(obs eq)→ OβR))

R =∞) P 2 × Sobs eq |= G(βL → F (H(obs eq)→ OβR))

i.e., the coupled twin-plant constructed from P satisfies the Finite Delay

property from Table 7.1 (for perfect recall) or Table 7.3 for bounded recall.

Proof. The proof follows the same pattern of bounded delay, with the ex-

ception that k and l are not bounded by the delay.

7.2 Pareto Optimal Sensor Placement

If a plant is not system diagnosable for a specification, we can either weaken

the specification (e.g., trace diagnosability) or try to increase the reasoning

power of the diagnoser. In particular, we might want to increase its recall

and the set of observables. The problem of finding a subset of sensors

that makes the system diagnosable is called sensor placement. Substantial

interest has been devoted to this problem, especially in the setting of au-

tonomous systems, where we face trade-offs between the available resources

(space, time, energy, etc.) and the accuracy of the diagnosis. Therefore,

one of the design goals is to identify the subset of observables that makes

the system diagnosable while minimizing some cost function. Notice that a

cost can be also associated to the delay2 that we provide to the diagnosis:

we might be able to use less sensors [26] by allowing a longer delay. In

many practical situations, there are multiple cost functions that we are

trying to minimize at the same time, and often these are incomparable. In

2For consistency, we assume that we want to minimize all costs, however, the delay usually grows as

an inverse of the number of observables.
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these cases, the notion of Pareto optimal is commonly used. A solution is

Pareto optimal w.r.t. a set of cost functions, if any solution that improves

the value of one of the cost dimensions also worsens the value of another

cost dimension. The set of solutions that are Pareto optimal is also called

Pareto frontier.

In this section we formulate the problem of sensor placement with mul-

tiple cost functions. In particular, we will focus on the use of the delay as a

cost function. We present three related approaches to solving this problem,

and provide an experimental evaluation that also extends to other domains

in which Pareto optimal parameter synthesis can be applied.

7.2.1 Problem Description

The problem of parameter synthesis (Section 2.5) aims at finding a valua-

tion for a set of parameters, s.t. a given property is satisfied. In this chap-

ter, we assume parameters to be Boolean, and call the set of valuations

(i.e., possible values for the parameters) Γ
∆
= B|U |. Given a parametric

LTS S = (V,E, U, I, T ), each valuation of the parameters γ induces an

LTS Sγ = 〈V,E, γ(I), γ(T )〉, in which we modify the initial condition and

transition relation by replacing each parameter occurrence with its value.

The order relation < over B induces a partial order ≺ over the parameter

valuations Γ.

ExactDel and BoundDel properties can be reduced to invariant

properties. FiniteDel, instead, requires an LTL property. Since we are

interested in seeing how the delay is influenced by the choice of sensors,

in the rest of the Section, we assume that we are dealing with invariants.

This assumption also helps from the practical point of view, since there is

more research and tools that can solve the parameter synthesis problem

for invariants than for full LTL.

Cost functions are integer-valued functions over parameter valuations:
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Cost : Γ→ N. A multi-dimensional cost function is defined as a vector of

cost functions; for brevity we write Cost : Γ→ Nm. We call Nm the space

of costs. Given two cost vectors (v1, · · · , vm) and (w1, · · · , wm), we define

the partial order relation � as (v1, · · · , vm) � (w1, · · · , wm) iff ∀i. vi ≤ wi.

Given S, ϕ and Cost, we say that an assignment γ ∈ Γ is Pareto-

Optimal iff:

1. Sγ |= ϕ, i.e., it is solution and

2. there is no γ′ s.t. Sγ′ |= ϕ and Cost(γ′) ≺ Cost(γ).

The Pareto-Frontier PF (Cost, ϕ) ⊆ Γ is the set of parameter assignments

that are valid for ϕ and that are Pareto-optimal with respect to Cost.

Pareto-optimality boils down to optimality with respect to a single cost

function when m = 1. The cost function can be represented symbolically

as a term Cost(U); a set of assignments is then simply identified by a

formula Cost(U) ./ v where v is a natural number and ./ is a relation

operator. For example, Cost(U) ≤ 5 are all the assignments with cost

less than 5.

Monotonicity

We make two different assumptions of monotonicity : property satisfaction

and cost function.

The first one is monotonicity of the satisfaction of the property. Intu-

itively, if the property holds under a given valuation, then it also holds for

all the successors. Conversely, if the property does not hold for a given

parameter valuation, then it does not hold for any of its predecessors. For-

mally, we say that S |= ϕ is monotonic w.r.t. Γ iff

∀γ, If Sγ 6|= ϕ then ∀γ′. γ′ � γ ⇒ Sγ′ 6|= ϕ
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Figure 7.2: Monotonicity with respect to Property and Cost function

The second type of monotonicity is defined with respect to the cost func-

tion. Intuitively, costs follow the same ordering of the parameter valuation.

Formally, we say that Cost is monotonic w.r.t. Γ iff

∀γ, γ′. If γ � γ′ then Cost(γ) � Cost(γ′)

As depicted in Figure 7.2, the higher we go in the lattice of valuations, the

higher the cost: the vertical arrow on the left denotes a cost function that

is upwards monotonic along each path. The lines in the figure show the

valuations for which the property ϕ holds (above the green) or not (below

the red). These assumptions are important because they allow us to quickly

prune the search space. For example, any time we find a valuation that

does not satisfy the property, we can prune the search space by removing

all valuations that are below it in the lattice. Similarly, we know that to

reduce the cost we need to move downwards in the lattice.

We assume a two-dimensional cost function, although the approach

should be extensible to cost functions of any dimension.
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Approach Outline

We present several algorithms for the computation of the Pareto frontier,

for a given S, ϕ, and Cost. These algorithms work under the assumption

that both the property satisfaction relation (S |= ϕ) and Cost are mono-

tonic with respect to Γ. To simplify exposition, we assume that there is at

least one parameter valuation γ s.t. Sγ |= ϕ. This can be checked before

starting the optimization problem.

The algorithms that we present define a spectrum based on how much

of the set of ValidPars we compute up-front. In Section 7.2.2, we com-

pute the whole set of good valuations up-front, and then proceed to the

computation of the Pareto-Frontier. In Section 7.2.3, we slice the space

ValidPars by one dimension and compute one of the slices at the time;

once a slice has been computed, we minimize w.r.t. to the other costs. By

doing so, we are able to skip slices (using the monotonicity assumption), so

that we end up computing a subset of ValidPars. Finally, in Section 7.2.4

we do not compute ValidPars directly, but navigate through the valua-

tions lattice driven by the cost functions and test on-the-fly membership

of points to ValidPars.

7.2.2 The valuations-first approach

The first algorithm we present is an eager, two-stage approach. Figure 7.3

provides a high-level description of the algorithm.

function ValuationsFirst(S,Cost, ϕ)

V P := ValidPars(S, ϕ)

return ParetoFront(Cost, V P )

end function

Figure 7.3: Valuations First pseudo-code

The first stage constructs the set of parameter valuations that are valid
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for the property ϕ. This gives a symbolic representation of the solution

space (ValidPars), regardless of cost considerations. The second phase

carries out an analysis of the solution space taking the costs into account,

and selecting the assignments that are Pareto-optimal, thus building the

Pareto front.

Each of the phases can be in turn refined. The computation of

ValidPars can be carried out directly, by performing a reachability anal-

ysis on S, thus obtaining Reachable(U, V ), and then considering only

the valuations for which the states always satisfy the property. This idea

has been explored with a BDD-based implementation in [41], where it was

applied in the computation of Fault-Trees. In many cases, however, the

computation of the reachable states can be over-killing.

function ValidPars(S, ϕ)

Bad := ⊥
S = (V,E, U, I, T )

while S 6|= ϕ do

γ′ := project counter-example on U

Bad := Bad ∨ γ′

I := I ∧ ¬Bad
end while

return ¬Bad
end function

Figure 7.4: ValidPars computation

In Figure 7.4 an alternative approach is presented, based on the algo-

rithm proposed in [50], that constructs the set ValidPars
∆
= {γi | S |=

γi → ϕ} of valid parameter valuations. The idea is to rely on a model-

checking routine to compute the set InvalidPars
∆
= {γi | S 6|= γi → ϕ},

i.e., a representation of the “lower part” of the lattice in Figure 7.2. At

a very high level, this is done by enumerating counterexample traces to

the negation of ϕ. Each trace is associated with an invalid parameter val-
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uation, which is then accumulated in the result, and removed from the

initial states, thus preventing the model checker from re-discovering it.

Once InvalidPars is computed, the space of valid parameter valuations

is simply obtained by complement. This algorithm can thus rely on a

model-checker as a black-box, therefore leveraging recent advancements in

SAT-based model-checking techniques (e.g., IC3).

The second phase carries out the optimization of the combinational

space defined by ValidPars with respect to Cost. This can be done, for

example, by enumerating all the elements in ValidPars and comparing

the associated costs, or by considering the symbolical characterization of

the Pareto front:

ParetoFront(U) = ValidPars(U)∧@U ′.((U ′ ≺Cost U)∧ValidPars(U ′))

Computing ParetoFront(U) can be done via encoding of the cost

functions into SAT or SMT, and application of optimization techniques [87,

143, 28].

The main drawback in the valuations-first algorithm is that in or-

der to compute ValidPars, we need to enumerate all the elements of

InvalidPars. This computation might be very expensive, and no infor-

mation is available until this phase has been completed. In particular, we

are not able to approximate the solution.

7.2.3 The One-Cost Slicing Approach

The second algorithm that we propose (Figure 7.5) interleaves the analy-

sis of the cost information with checks on the validity of the parameters.

This is done by slicing the space of valid parameters along the different

dimensions (i.e., cost functions).

We first initialize c1 to the highest possible value, and the Pareto frontier

to the empty set. We iterate as follows. First, we compute all the candidate
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function Slicing(S,Cost, ϕ)

PF := ∅
γ = >;

c1 := Cost1(γ)

S ′ := FixCost(S,Cost1 = c1)

V PCost1 := ValidPars(S ′, ϕ)

while V PCost1 6= ∅ do

(γ, c2) = Minimize (Cost2, V PCost1)

(γ, c1) := Reduce Cost1(S, γ, ϕ, c2)

PF.add(γ, c1, c2)

c1 := c1 − 1

S ′ := FixCost(S,Cost1 = c1)

V PCost1 := ValidPars(S ′, ϕ)

end while

return PF

end function

function FixCost(S, CostExpr))

S = (V,E, U, I, T )

S ′ := (V,E, U, I ∧ CostExpr, T ) return S ′

end function

Figure 7.5: Slicing algorithm

solutions on the parametric system S ′ in which we fixed the cost Cost1 to

the value c1. We then search in the set of candidates (V PCost1
) for the best

valuation and cost for Cost2. Once an optimal cost c2 has been found, we

fix it and try to find a smaller valuation w.r.t. Cost1, and add the solution

to the Pareto front. This is done by calling a function ReduceCost1
which,

given a solution γ of cost (c1, c2), returns another solution γ′ of cost (c′1, c2)

with c′1 ≤ c1. For now, Reduce is simply a function that tries to improve

a candidate solution γ. Its actual implementation is described in the next

Section.

In order to find the other points of the Pareto frontier, we decrease c1
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and test whether any solution (independently of Cost2) exists. If it does,

we repeat the process, otherwise we terminate.

Note that in the function Minimize we operate on the set of the solu-

tions, while in Reduce, we generate a candidate γ′ � γ and test whether

it is still a solution (i.e. Sγ′ |= ϕ). Due to the monotonicity assumption,

Reduce cannot skip solutions. However, Reduce can drastically acceler-

ate the search by avoiding the enumeration of all costs in c1.

In the pseudo-code, the addition of solutions to the Pareto front is sim-

plified. We cannot add a solution γ1 immediately in the Pareto front, but

we need to wait for the next solution γ2 to be added (PF.add). If the

costs of γ1 and γ2 are incomparable, then γ1 is Pareto-optimal and gets

added to the frontier. If γ2 is smaller than γ1, then γ1 is not optimal and

is discarded. This pair-wise operation guarantees that only Pareto optimal

solutions are considered.

This approach only computes slices of ValidPars when needed. Al-

though in the worst-case we can end-up computing it all by slices, when

calling the Reduce function, it is generally possible to accelerate the

search and skip intermediate slices.

7.2.4 The costs-first approach

One of the key insights of the slicing algorithm is that big parts of

ValidPars might not be necessary in order to compute the Pareto front.

In the costs-first approach we take this idea to the extreme: we do no com-

pute ValidPars anymore. Instead, we explore the lattice of valuations

induced by the cost functions. Every time we find a promising valuation γ,

we test whether it is actually a solution (i.e., Sγ |= ϕ). Due to the mono-

tonicity assumption, whenever we find a valuation that is not a solution,

we can prune all of its predecessors in the lattice (since they cannot be

solutions either).
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function CostsFirst(S,Cost, ϕ)

PF := ∅
γ := >;

c1 = Cost1(γ); c2 = Cost2(γ)

repeat

c2 = c2

for γi ∈MaxSmallerCandidateCost2(c1, c2) do

if Sγi |= ϕ then

(γ, c2) := Reduce Cost2(S, γ, ϕ, c1)

end if

end for

(γ, c1) := Reduce Cost1(S, γ, ϕ, c2)

PF.add(γ, c1, c2)

c1 := c1 − 1

until No solution exists for FixCost(S,Cost1 = c1)

return PF

end function

Figure 7.6: CostsFirst pseudo-code

An overview of the algorithm is provided in Figure 7.6. We start by

getting an upper-bound on both costs by considering the cost of the top

valuation. In the outer-loop we decrease the value of Cost1, similarly to

the slicing approach. Within the inner-loop, however, we proceed by enu-

merating the solutions that have smaller value w.r.t. Cost2. In particular,

MaxSmallerCandidate returns the maximal solution(s) with the same

cost c1 but with smaller c2. The process terminates whenever no solution

can be found for a given value of Cost1. Note how the structure of this

algorithm is similar to the one of the slicing approach. The main difference

is that we never need to compute ValidPars.

This algorithm has an additional advantage over the previous ap-

proaches: it can be interrupted at any point and is guaranteed to provide

us with an under-approximation of the Pareto frontier. In fact, at any

point in time, we have a subset of the Pareto frontier. We call this prop-
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erty any-time. This is in contrast with the other approaches such as [41],

or the valuations first approach, that require termination of the procedure

in order to provide the solution space of the parameters.

7.2.5 IC3-based implementation

The approaches described in the previous section have been implemented

on-top of an IC3-based engine. In particular, there are two key ideas that

we can leverage in order to have an efficient implementation using IC3.

First, we notice that Sγ |= ϕ holds iff S |= γ → ϕ. This observation makes

it possible to reason always on the same system, and moves the choice of the

valuations within the property. This leads us to the second fundamental

observation. If S |= γ → ϕ, we can extract from the IC3 model-checker the

inductive invariant ψ. By definition of inductive invariant we know that

ψ |= γ → ϕ; moreover, it might be the case that we can reuse the same

invariant to check whether another valuation γ′ is a solution: i.e., ψ |=
γ′ → ϕ. We will use this idea when trying to reduce the valuation, since

this makes it possible to reason locally on a (relatively small) formula, and

does not require unrolling or computing reachable states. The efficiency

of the procedure will then largely depend on how well the reduction step

works.

Figure 7.7 presents the adaptation of the costs-first algorithm when

using the inductive invariant to perform the Reduce step. The same idea

for Reduce can be applied in the slicing algorithm.

We navigate the lattice by picking the maximal candidate(s) of smaller

cost w.r.t. Cost2 (MaxSmallerCandidate). This fact guarantees that

the algorithm will terminate, since we are always picking a solution of

smaller dimension. We then check that the property still holds for the new

valuation γi, by using IC3. If this is the case, we are provided with an

inductive invariant ψ, s.t., ψ |= γi → ϕ.
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function CostsFirstIC3(S,Cost, ϕ)

PF := ∅
γ := >;

c1 = Cost1(γ); c2 = Cost2(γ)

repeat

c2 := c2

for γi ∈MaxSmallerCandidateCost2(c1, c2) do

(res, ψ) := IC3(S, γi → ϕ)

if res == Safe then

# ψ is an inductive invariant s.t. ψ |= γi → ϕ

(γi, c1, c2) := ReduceCost2(ψ, γi, ϕ)

end if

end for

(γi, c1, c2) := ReduceCost1(ψ, γi, ϕ)

PF.add(γ, c1, c2)

c1 := c1 − 1

until No solution exists for FixCost(S,Cost1 = c1)

return PF

end function

Figure 7.7: IC3-based CostsFirst pseudo-code

The operation of picking a cost-predecessor could be, in principle, dele-

gated to a pseudo-Boolean constraint solver, or to other reasoning engines

that are able to deal with costs natively. For our simple implementation,

we use an SMT solver with the theory of bit-vectors.

When considering the parameters as a set of elements, we can try to

minimize the set by implementing the Reduce procedure using unsat-

cores. Namely, we check the unsatisfiability of ψ∧¬ϕ under the assumption

of γi and use standard features from modern SAT solvers to minimize the

unsat-core that, in turn, translates in picking a subset of the parameters

that makes the formula unsatisfiable. By doing so, we are able to “jump”

and quickly reduce the valuation γ. For integer parameters, instead, we

use a Reduce procedure that performs a linear or binary search, using the
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inductive invariant. Reduce could be the identity function, this will still

preserve the correctness and termination of the approach. However, this

would end-up requiring an explicit state search of the lattice. Having a

smart Reduce procedure makes it possible to jump and terminate faster.

Other choices of Reduce might be studied in the future.

Since the inductive invariant does not depend on the costs, it is possible

to reuse the invariant from previous calls in an incremental way. Intuitively,

this provides us with stronger invariants that are more likely to allow us to

reduce the parameters aggressively. In particular, at iteration i, we obtain

the invariant ψi, that can be strengthen by considering ψ′i =
∧
n∈[0,i] ψn.

7.2.6 Experimental Evaluation

The algorithms described in this section were implemented on top of the

nuXmv model checker [47].3 We evaluate our approach on a series of

benchmarks from the domains of sensor placement [26]. These examples

were obtained from realistic case studies on a simpler problem, i.e. finding

a good set of sensors for a fixed delay. These simpler benchmarks were

challenging and in some case not solvable by previous techniques [26].

Some benchmarks come from the aerospace domain: Orbiter, rover-

small, and roverbig (from [40]), Cassini [41], x34 [55]. Elevator

models an elevator controller, parameterized by the number of floors. c432

is a Boolean circuit used as a benchmark in the DX Competition [82]. All

models also contain faults based on which a sensor placement problem is

formulated.

Product Lines When designing a product, engineers are often faced with

a high degree of variability in terms of possible features. Such variability is

3The executable and benchmark instances used in the evaluation are available at http://marco.

gario.org/phd/
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usually captured in product line models (sometimes referred to as feature

models). For instance, in [92] the authors model variability in a controller

design, and the authors of [60] consider software product lines. Here we

are specifically interested in the analysis of dynamic systems as opposed to

static contexts which are usually addressed with constraint programming

techniques.

The goal of product line engineering is usually to identify which combi-

nations of features satisfy a certain property. Here however we specifically

address the Pareto-optimal trade-off problem. In various works there are

different assumptions on the monotonicity of features, that is whether by

adding features the possible behaviors increase monotonically or whether

some behaviors can be overridden. In our work we only assume the mono-

tonicity of the property of interest in terms of feature additions.

The properties for the product lines benchmarks, that were derived for

our invariant checking framework, are artificial but tailored specifically for

these examples. For both cases we are unfortunately not aware of other

publicly available industrial benchmarks. product lines are benchmark

instances derived from [92], describing a railway switch controller. The

product-line features correspond to possible communication strategies used

by the controller. We explore a design trade-off along two dimensions. The

first dimension is the upper bound on the message sequence length. The

second dimension is the cost associated to dropping a particular feature,

specified by a random cost function. Our aim is to minimize both the

message sequence bound and the cost of removed features.

Results For each example, we generated multiple benchmarks by varying

both the number of parameters considered and the (randomly-generated)

costs of the individual parameters. Overall, our benchmark set consists of

81 instances. The number of Pareto-optimal solutions varies between 0 and
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5. Experiments were executed on a Linux cluster equipped with 2.5Ghz

Intel Xeon CPUs with 96Gb of RAM. We used a time limit of 1 hour and

a memory limit of 6Gb.

one-cost

Family #Instances valuations-first slicing costs-first

c432 32 11 13 32

cassini 21 6 12 21

elevator 4 4 4 4

orbiter 4 4 4 4

roversmall 4 4 4 4

roverbig 4 4 4 4

x34 4 4 4 4

product lines 8 6 4 8

TOTAL 81 43 49 81

Figure 7.8: Number of solved instances by each approach

In Figure 7.8 we present the number of instances solved for each problem

family. For the c432, cassini and product lines benchmarks, we can

see how the costs-first approach finds all the solutions within the timeout,

whereas the other two approaches fail on several instances. Figure 7.9

shows the accumulated-time plots for the different algorithms, plotting the

number of solved instances (y-axis) in the given total amount of time (x-

axis) in logarithmic scale.

For the c432 and cassini benchmark, we show in Figure 7.10 the run-

time as a function of the parameters. As expected, on the same model, the

number of parameters has a big impact on the runtime. Indeed, for the

valuations-first and the one-cost slicing approaches this has an exponential

tendency.

Finally, in order to evaluate the impact of the Reduce procedure in the

costs-first algorithm, we performed an experiment in which we ran costs-

first without applying Reduce. From the scatter plot of Figure 7.11, we

can see that Reduce is crucial for performance: without it, costs-first
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Figure 7.9: Accumulated-time plot showing the number of solved instances (x-axis) in a
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solves only 48 (out of 81) instances, and the runtimes increase by orders

of magnitude.

7.3 Chapter Summary

In this chapter we discussed the twin-plant approach for (system) diagnos-

ability testing. We show how to extend the twin-plant approach to deal

with different types of alarm conditions and different amounts of recall.

By using the twin-plant approach, we can leverage parameter synthesis
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Figure 7.11: Impact of Reduce in the costs-first algorithm.

engines in order to perform synthesis of observables. We discussed several

approaches for performing Pareto-optimal parameter synthesis under the

assumption of monotonicity. In particular, we showed that our IC3-based

implementation makes it possible to solve many instances if we enable

symbolic pruning techniques.
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Synthesis

Manually designing an FDI is a difficult task. Minor changes in the plant

design might brake the current FDI design. For this reason, the design of

the FDI(R) is commonly postponed until late in the system development

life-cycle. The idea is to wait until a point in which the plant design is

stable, before starting the FDI design. This process, however, results in a

drastic shortening of the time available to design, implement and test the

FDI. The outcome is that the FDI might be shipped when still partially

incomplete.

In the previous chapters we discussed how to carry out the specification

and validation of the FDI requirements. By having formal requirements

it is easier to drive the verification of the FDI, and continuously verify

that the system provides enough information for the requirements to be

implemented (diagnosability).

In this chapter, we take a step forward, and discuss the possibility of

automatically synthesizing an FDI starting from the formal requirements

(ASLK specification) and a formal model of the system. The advantages of

FDI synthesis are many-fold. First, the time required to get a working FDI

is reduced considerably. Second, the design of the FDI does not require an

expert knowledge of the system. Third, additional optimization constraints
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on the design can be imposed, e.g., limit the size of the FDI or the access

to sensors. Finally, the synthesized FDI can be used as reference while

manually designing a new one.

In this chapter, we discuss the synthesis process for finite state systems

under perfect recall (Section 8.1), and for both finite and infinite state

systems under bounded recall (Section 8.2).

The contribution of this Chapter are:

• An algorithm for the synthesis of perfect-recall diagnosers for finite

state systems (originally presented in [34, 33])

• An algorithm for the synthesis of bounded-recall diagnosers based on

parameter synthesis

• Examples of the application of both, and experimental data on their

applicability.

8.1 Perfect Recall

In this section, we discuss how to synthesize a perfect recall diagnoser that

satisfies a given specification A. The choice of perfect recall as a start-

ing point is driven by the existing literature [138, 140], and by the fact

that perfect recall diagnosers are more powerful than bounded recall ones.

We consider the most expressive case of ASLK (maximal/trace diagnos-

able), which also satisfies all the other cases, and we limit the discussion

to finite state systems. A the end of the section, we will discuss the chal-

lenges involved in extending the approach to infinite state systems. We

formally prove several formal properties of the synthesized diagnoser, and

in particular that it satisfies the specification.

The idea of the synthesis algorithm is to generate an automaton that

encodes the set of possible states in which the plant could be after each
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observation. The result is achieved by generating the power-set of the states

of the plant, also called belief states1, and defining a suitable transition

relation among the elements of this set, only taking into account observable

information. Each belief state of the automaton is then annotated with the

alarms that are satisfied in all the states of the belief state. The resulting

automaton is the Diagnoser.

8.1.1 Synthesis algorithm

Given a partially observable plant P = 〈V P , EP , IP , T P , EP
O〉, let S be the

set of states of P . The belief automaton is defined as B(P ) = 〈B,E, b0, R〉
where B = 2S, E = EP

o , b0 ∈ B and R : (B×E)→ B. B represents the set

of sets of states, also called belief states. Given a belief state b, we use b∗ to

represent the set of states that are reachable from b by only using events

in EP \ EP
o (non observable events), and call it the u-transitive closure.

Formally, b∗ is the least set s.t. b ⊆ b∗ and if there exist e ∈ EP \ EP
o

and s′ ∈ b∗ such that 〈s′, s〉 ∈ T P (e) then s ∈ b∗. b0 is the initial belief

state and contains the states that satisfy the initial condition IP (i.e.,

b0 = {s | s |= IP}).
Given a belief state b and an observable event e ∈ EP

o , we define the

successor belief state b′ as:

R(b, e) = b′ = {s′ | ∃s ∈ b∗. 〈s, s′〉 |= T P (e)}

that is the set of states that are compatible with the observable event e

in a state of the u-transitive closure of b. Intuitively, we first compute the

u-transitive closure of b to account for all non-observable transitions, and

then we consider all the different states that can be reached from b∗ with

an occurrence of the event e.
1The name belief state comes from the setting of planning under partial observability. In our epistemic

setting, it would be more accurate to name them knowledge state, since we are dealing with knowledge

and not belief. However, for consistency with previous work we maintain the name belief state.
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The diagnoser is obtained by annotating each state of the belief automa-

ton with the corresponding alarms. We annotate with Aϕ all the states b

that satisfy the temporal property τ(ϕ). As explained later on, any tem-

poral τ(ϕ) can be handled by introducing suitable propositional formulas.

Therefore we consider the simplest case in which τ(ϕ) is a propositional

formula and formally say that the annotation ab of the belief state b is

the assignment to Aϕ such that ab(Aϕ) is true iff for all s ∈ b, s |= τ(ϕ).

We perform the same annotation for A¬ϕ. The diagnoser obtained by this

algorithm induces three alarms, related to the knowledge of the diagnoser.

In particular, the diagnoser can be sure that a condition occurred (Aϕ)

can be sure that a condition did not occur (A¬ϕ) or can be uncertain on

whether the condition occurred (¬Aϕ ∧ ¬A¬ϕ) – notice that, by construc-

tion, it is not possible for both Aϕ and A¬ϕ to be true at the same time.

In this way, at any point in time we are able to understand whether we

are on a trace that is not diagnosable (and thus there is uncertainty) or

whether the diagnoser knows that the condition did not occur. This can

provide additional insight on the behavior of the system.

Figure 8.1 provides a pseudo-code of the main function of the synthesis

task: the construction of the belief automaton. Starting from the set of

initial states, we perform an explicit visit until we have explored all be-

lief states. For each belief state we first compute its u-transitive closure

(u trans closure) w.r.t. the non-observable events E, obtaining b∗. We

then compute the possible observable events available from b∗, and iter-

ate over each event oi obtaining the set of states target belief such that

T (b∗, oi, target belief) is satisfied (reachable w obs). We can now add a

transition to our automaton linking the belief state b to the belief state

target belief through the event oi. Once we have completed this phase,

we have an automaton with labeled transitions. The automaton resulting

from this function can then be annotated by visiting each state and testing
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function belief automaton(I, T , E, Eo)

visited← {}
edges← {}
stack ← [I]

while not stack.is empty() do

b← stack.pop()

b∗ ← u trans closure(b, T, E)

for all o ∈ get observable events(b∗, T, Eo) do

target belief ← reachable w obs(b∗, o, T )

edges.add((b, o, target belief))

if target belief 6∈ visited then

visited.add(target belief)

stack.push(target belief)

end if

end for

end while

return Automaton(visited, edges)

end function

Figure 8.1: Pseudo-code of the Belief Automaton construction phase
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whether the state entails (or not) the alarm specification.

The approach resembles the constructions by Sampath [138] and Schu-

mann [140], with the following main differences. First, we consider LTL

past expression as diagnosis condition, and not only fault events as done

in previous works. Second, instead of providing a set of possible diagnoses,

we provide alarms. In order to raise the alarm, we need to be certain that

the alarm condition is satisfied for all possible diagnoses. This gives raise

to a 3-valued alarm system: we know that the fault occurred; know that

the fault did not occur; or we are uncertain.

The approach also resembles the subset construction used in [69, 153]

for model-checking temporal epistemic logic. This fact is yet another indi-

cation that there is a strong relation between temporal epistemic logic and

FDI design.

8.1.2 Formal Properties of the Synthesized diagnoser

For each alarm condition, the temporal condition is defined as (see Sec-

tion 6.1):

- τ(ϕ) = Y dβ for ϕ = ExactDel(A, β, d);

- τ(ϕ) = O≤dβ for ϕ = BoundDel(A, β, d);

- τ(ϕ) = Oβ for ϕ = FiniteDel(A, β).

notice that those are all safety property. The results below hold for any of

those τ .

The generated transition system is a correct, complete and maximal

diagnoser. We build a new plant P ′ by adding a monitor variable τ to P

s.t., P ′ = P × (G(τ(ϕ) ↔ τ)), where we abuse notation to indicate the

synchronous composition of the plant with an automaton that encodes the

monitor variable. In this way, we can handle the three alarm conditions in
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the same way, by reducing them to a zero-delay alarm. In fact, the alarm

condition is rewritten as ϕ′ = ExactDel(Aϕ, τ , 0).

D ⊗ P |= ϕ iff D ⊗ P ′ |= ϕ′

We define Dϕ as the diagnoser for ϕ. Dϕ = 〈V Dϕ, EDϕ, IDϕ, TDϕ〉 is a

symbolic representation of B(P ) with Aϕ ⊆ V Dϕ, E
Dϕ
o = EP

o and such that

every state b of Dϕ represents a state in B (with abuse of notation we do

not distinguish between the two since the assignment to Aϕ is determined

by b).

Theorem 12. Dϕ is deterministic.

Proof. The result follows directly from the definition of the belief automa-

ton, which is deterministic (one initial state and one successor). The as-

signment to Aϕ is determined by the belief state.

Lemma 1. For every reachable state b × s of Dϕ ⊗ P , for every trace σ

reaching b× s, for every state s′ ∈ b, there exists a trace σ′ reaching b× s′

with obs(σ) = obs(σ′).

Proof. By induction on σ. All traces are observationally equivalent in

the initial state. Let 〈b1 × s1, e, b× s〉 be the last transition of σ and let

σ1 be the prefix of σ without this last transition. If e ∈ E \ Eo then

obs(σ) = obs(σ1). Otherwise, for every state s′ ∈ b there exists a transition

〈s′1, e, s′〉 such that s′1 ∈ b∗1. By inductive hypothesis there exists a trace σ′1

reaching b1 × s′1 such that obs(σ1) = obs(σ′1). Therefore the concatenation

of σ′1 with the transition 〈b1 × s′1, e, b× s′〉 results in a trace σ′ reaching

b× s′ such that obs(σ) = obs(σ′).

Theorem 13 (Maximality). Dϕ ⊗ P |= G(xKτ(ϕ)y → xAϕy).

Proof. Consider a trace σ and i ≥ 0. If σ, i |= xKτ(ϕ)y, then for all traces σ′

and points j s.t. ObsEq((σ, i), (σ′, j)), σ′, j |= τ(ϕ) (Recall that x·y indicates
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an observation point – Definition 10). By Lemma 1, all states s ∈ σ[i]

there exists a trace σ′ with obs(σ) = obs(σ′), and therefore s |= τ(ϕ) so

that σ[i] |= xAϕy.

Lemma 2. Given a trace σ of Dϕ ⊗ P . Let σ[i] = b × s. If i is an

observation point, then s ∈ b.

Proof. By assumption, i is the n-th observation point of σ for some n. We

prove the lemma by induction on n.

Consider the case n = 1. If σ[0] = b0×s0, by construction of Dϕ, s0 ∈ b0.

Let σ[i−1] = b′×s′ and let e be the i-th (observable) event of σ. If i is the

first observation point of σ, it means that b′ = b0 and s′ ∈ b∗0. Moreover,

〈s′, s〉 ∈ T (e) and therefore s ∈ b.
Consider the case n > 1. Let j be the n − 1 observation point, σ[j] =

bj × sj, σ[i − 1] = b′ × s′ and let e be the i-th (observable) event of σ.

Similarly to the previous case, b′ = bj and s′ ∈ b∗j . Moreover 〈s′, s〉 ∈ T (e)

and therefore s ∈ b.

Theorem 14 (Correctness). Dϕ ⊗ P |= G(xAϕy → τ(ϕ)).

Proof. Consider a trace σ and i ≥ 0. Suppose σ, i |= xAϕy and let σDϕ

and σP be respectively the left and right component of σ. Then, for all

s ∈ σDϕ
[i], s |= τ(ϕ). Since i is an observation point, by Lemma 2,

σP [i] ∈ σAϕ
[i]. We can conclude that σ[i] |= τ(ϕ).

Theorem 15 (Completeness). If ϕ is an alarm condition required to be

trace diagnosable, then Dϕ is complete. If ϕ is a system diagnosable con-

dition and ϕ is diagnosable in P , then Dϕ is complete.

Proof. Since Dϕ is maximal and correct (Theorems 13 and 14), we can

apply Theorem 6 (if ϕ is trace diagnosable) or Theorem 7 (if it is system

diagnosable) to obtain completeness.
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(NPC)start

(NPC)

(NPC)

(FPC)

(FPC)

u-trans

Figure 8.2: Expanding the initial belief state of the battery LTS.

8.1.3 Battery Sensor System

We show the first step of the algorithm on a simplified version of the battery

component of our running example (Figure 4.9). We ignore the events

related to threshold passing of the battery (Mid, Low, High) and only

consider the observable event Off, signaled when the charge reaches zero,

and the ones due to mode changes. To keep the representation compact,

we indicate each state with three symbols. For example, we use (NPC) to

indicate the state “Nominal, Primary, Charging” and (NPC) to indicate

the state “Nominal, Primary, Not Charging”. Similarly we use F, O, and

D to indicate Faulty, Offline and Double. Recall that in the original model,

the mode transitions are observable but all other transitions are not.

In the first step (Figure 8.2), we take the set of initial states. This is the

set of states (NPC) for any value of the charge ∈ [0, C]. The u-transitive

closure needs to take into account all non-observable transitions. Therefore,

we need to consider going from Nominal to Faulty, from Charging to Not

Charging, and their combination.

These are all the states that are reachable before an observable event can

occur. We now take each observable event and compute the set of states

that are reachable with one of the observable events (Figure 8.3): the

battery being discharge (Off ), and the change of mode (Offline, Double).

Note that one of the belief states (marked with ‡) is smaller than the

others. This is due to the fact that in our model, the discharging of the
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(NPC)start

(NPC)

(NPC)

(FPC)

(FPC)

(NOC)

(NOC)

(FOC)

(FOC)

(NDC)

(NDC)

(FDC)

(FDC)

(NPC)

(FPC)

(FPC)

† ‡u-trans

Offline
Double

Off (NPC)start

(NOC)

(NOC)

(FOC)

(FOC)

(NDC)

(NDC)

(FDC)

(FDC)

(NPC)

(FPC)

(FPC)

Offline Double

Off

Figure 8.3: Expanding the belief state via observable transitions

ANC ,

AN

¬A¬NC
¬A¬N

start

¬ANC
¬AN
¬A¬NC
¬A¬N

¬ANC
¬AN
¬A¬NC
¬A¬N

¬ANC
¬AN
A¬NC

¬A¬N

· · · · · ·

· · ·

Offline
Double

Off

Figure 8.4: Annotation of the belief states

battery cannot occur if the battery is nominal, charging and in primary

mode (NPC). Thus, the fact that we receive the Off event allows us to

exclude that state. The state obtained by computing the transitive closure

(marked with †) is not part of our final automaton, and is provided in the

figure only to simplify the understanding.

We repeat these two steps until all belief states have been ex-

plored. We then proceed to the labeling phase, in which we la-

bel each state with the corresponding alarm. For example, by

considering the alarms ExactDel(ANC , Nominal ∧ Charging, 0) and

ExactDel(AN , Nominal, 0), we obtain the diagnoser partially repre-

sented in Figure 8.4. Notice how, in the initial state we can raise the alarm

ANC , and this alarm can only be changed by an observable transition.

130



8.1. PERFECT RECALL

9 = {C1}

10 = {B0}

11 = {A2}, YB0

12 = {C0}, YYB07 = {A0,C0}

6 = {B2}

8 = {A0}

5 = {B1}

14 = {B2,B0}

2 = {B1} 

13 = {A1}

4 = {A2, A0, C0}

1 = {B0,B2}

3 = {A1, C1}

Figure 8.5: The belief automaton of the Magicbox example.

131



CHAPTER 8. SYNTHESIS

X Y State

0 0 4 = {A2, A0, C0}
0 1 3 = {A1, C1}
1 0 1 = {B0, B2}
1 1 2 = {B1}

Figure 8.6: Initial states observations

8.1.4 MagicBox

Figure 8.5 shows the belief automaton for our magicbox example (Fig-

ure 6.4), and the following specification A:

A = {

ϕ1 = ExactDelK(A(B1), βB1, 0, system, True),

ϕ2 = ExactDelK(A(C1), βC1, 0, trace, True),

ϕ3 = BoundDelK(A(B0), βB0, 2, system, True)

}

This example is smaller than the battery sensor. Therefore, we are able

to show the complete construction. We work in the synchronous setting.

To keep the diagram simple, we did not add the observables on the edges.

Note that in the diagram states 2 and 5 have the same belief state but are

handled differently because 2 is an initial state.

At the beginning we do not know where the ball is, therefore our first

observation splits the initial belief state in 4 possible belief states (gray

nodes) (Figure 8.6).

Let us take the most ambiguous initial state: 4. This state has transi-

tions to 5, 6 and 7. Each of these transitions will reduce the uncertainty

on the location of the ball; in particular, in 5 and 6 we will have certainty

on the ball location (B1 and B2 respectively). In 7 we can say for sure that

the ball is in the column 0: 7 |= (A0 ∨ B0 ∨ C0).

132



8.1. PERFECT RECALL

Finally, note that 11 and 12 contain the monitor variables Y B0

and Y Y B0, that will be used for handling the specification ϕ3 =

BoundDelK(A(B0), βB0, 2, system, True).

Once we have constructed the belief automaton, we can navigate it and

add the alarm Aϕ whenever the temporal formula τ(ϕ) holds. The result

of the annotation process is presented in Figure 8.7, where for clarity we

show only the positive annotations. Let us take the first of our specifi-

cations: ϕ1 = ExactDelK(A(B1), βB1, 0, system, True). We annotate

with A(B1) all the states b in which b |= τ(ϕ1), i.e., b |= B1. These are the

states 2 and 5; all other states are marked with the negation of the alarm

!A(B1).

We proceed in a similar way for the second specification

ϕ2 = ExactDelK(A(C1), βC1, 0, trace, True)

However, we realize that there is only one state in which C1 holds, i.e., 9.

In 3 we have an ambiguity between A1 and C1. If our specification required

system diagnosability, 3 would be a witness of the non-diagnosability of the

system. However, our specification requires trace diagnosability. There-

fore, we annotate 9 with A(C1) and all other states with !A(C1). It should

be clear, that using the same annotation (!A(C1)) for both 3 and (e.g.) 14

is counter-intuitive. In 3, we do not know whether the ball is in C1, while

in 14 we are sure that the ball is not in C1. To handle this situation, we

break the specification ϕ2 in two parts:

ϕ2+ = ExactDelK(K(C1), βC1, 0, trace, True)

ϕ2− = ExactDelK(K!(C1),¬βC1, 0, trace, True)

For clarity, we include the epistemic operator (K) in the alarm name,

therefore encoding all situations of interest: the diagnoser Knows that C1

holds, or it Knows that it does not. We can now annotate 9 with K(C1), all
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9 = K(C1)

10 = K!(C1), A(O2B0)

11 =  K!(C1), A(O2B0)

12 = K!(C1),
 A(O2B0)

7 = K!(C1)

6 =  K!(C1)

8 =  K!(C1)

5 = A(B1), K!(C1)

14 = K!(C1)

2 = A(B1), K!(C1)

13 = K!(C1)

4 = K!(C1)

1 = K!(C1)

3 = 

Figure 8.7: The diagnoser

the other states (except 3) with K!(C1) and then complete the annotations

with !K(C1) and !K!(C1). After performing the annotation, in 3 neither

the alarm K(C1) nor K!(C1) will hold, due the non-diagnosability. This

is particularly useful, because now we can react accordingly; for example,

a recovery module might act in a different way knowing whether there is

uncertainty on the occurrence of C1.

Splitting the specification in a positive and negative part is even

more interesting for bounded specification. Let us consider ϕ3 =

BoundDelK(A(B0), βB0, 2, system, True). The diagnosis condition is di-
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agnosable with delay 2. We have uncertainty in 14, but then in 11 we know

that KO≤2B0 holds (due to the monitoring variable Y B0). Therefore, the

specification is system diagnosability. However, it might be interesting to

have both positive and negative alarms, in order to annotate 14 and 1 with

the information that O≤2B0 might hold there, and distinguish them from

all other states in which we are sure that it does not hold (e.g., 5).

Trace diagnosability is needed in the initial states. For example, we

have uncertainty for C1 in 3, however, this is the only situation in which

we have uncertainty on C1. Excluding this state, the rest of the system is

diagnosable. This motivates the idea of trace diagnosability.

Figure 8.7 shows a maximal annotation for ϕ3. The annotation

A(O2B0) is given to 10, 11 and 12. This means that, for each state

in which τ(ϕ) = O≤2βB0 holds, we have the annotation A(O2B0). We

could argue that having the alarm A(O2B0) only in 11 would be correct

too. Even more, we would still be correct if we had the alarm on 10 and

12 only. The three formalizations satisfy our definition of non-maximal

bounded-delay specification; however, this situation leaves many details

on the behavior of the diagnoser under-specified, making it hard to use the

information provided by the diagnoser to devise a recovery or containment

procedure. This is an example of how maximality provides a clear and

un-ambiguous specification of the diagnoser.

8.1.5 Perfect Recall and Infinite State

In order to apply the belief explorer construction to an infinite state system,

we need to overcome a few issues.

First, computing the forward image (i.e., to obtain successor states)

requires performing a quantifier elimination. Even in the cases in which

this is decidable, it is usually computationally expensive.

Second, an infinite state system might have an infinite number of belief
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states. The simplest example is the case in which a variable keeps growing

as a function of time. Thus, the procedure will not terminate. In order

to mitigate this issue, we expect that the belief construction needs to in-

tegrate better the observables and the alarm conditions. Currently, the

belief construction and state annotation phases are completely separated.

By knowing which alarms and observables are needed to perform the an-

notations, the belief construction might be able to prune and simplify the

belief states without loosing important information. In this way, it should

be possible to collapse belief states that have reached a fix-point for what

concerns the observations and alarms.

Finally, let us assume that we are able to generate the belief states

for the system. In order to understand whether we have already visited

a belief state (and thus reached a fix-point), we need a way to compare

belief states. In the finite case, the use of BDDs provides a canonical

representation of the belief states, thus we can detect that we have already

visited a belief state in constant time. For infinite state systems, canonical

representations are limited and thus to detect completion we would (in

the worst case) perform O(n) checks for n states of the belief automaton.

Consider that in the finite state, the number of belief states is exponential

in the number of states of the system (that, in turn is exponential in the

number of variables); this means that adequate data-structures need to be

identified to make the algorithm work in practice.

In the literature there has been some work that takes advantage of

particular features of the underlying infinite state system, in order to per-

form the diagnoser construction. For timed automata, [151] provides an

algorithm to construct the explicit diagnoser using Difference Bound Ma-

trices [18] (DBM). In a timed automata, the only infinite component is

represented by the clock variables. DBMs are commonly used for timed

automata analysis. Therefore, the intuition of the approach is to decouple
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the finite variables from the clock variables, and handle the latter with

ad-hoc data structures.

Similarly, [149] proposes an algorithm for Stochastic Discrete Event Sys-

tems (SDES). A SDES has an infinite characterization due to the proba-

bility of reaching a state. The idea used in [149] is to decouple the state

of the system from the probability function. Each edge of the resulting

diagnoser is annotated with a probability matrix, that is used at runtime

to update the probability of being in a given state within the target belief

state.

Both [151] and [149] are mostly theoretical works, and it is unclear

whether they can scale to models of realistic size. Nevertheless, both works

suggest to divide the finite from the infinite part, and handle them sepa-

rately. this approach might be applicable to other types of system.

Approaches based on the power-set construction are not the only op-

tion to perform synthesis. A different strategy, could involve exploring

techniques from automata learning such as L∗ [5] and variants [1] that are

designed to learn Input/Output systems.

8.2 Bounded Recall

In some practical applications, the assumption of perfect recall is too

strong. In practice, we expect the diagnoser to recall a limited number

of observations and act upon those. This justifies the use of bounded re-

call for the diagnoser.

The outcome of the synthesis process in the perfect recall case is an

automaton. In the bounded recall case, instead, it is a combinational

circuit. This has several advantages, for example the fact that we can

synthesize a diagnoser also for infinite state systems, and that we can

verify properties of the diagnoser using SAT/SMT technologies.
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8.2.1 Diagnoser Synthesis as Parameter Synthesis

In a bounded recall diagnoser with recall R 6= ∞, an alarm A can be

seen as an expression A ⊆ OR stating which tuples of observations need

to trigger the alarm. In particular, we want to find all the observations

that satisfy the alarm specification. The alarm A, becomes a function of

the observations in the last R time-steps. To simplify notation, we count

backwards and indicate with o0 the current observation, o1 the observation

1 step before the current and so on. Therefore, the alarm A with R = 3,

becomes a relation A ⊆ O3 and we can write it as A(o0, o1, o2).

Identifying the set of observations that belong to the alarm relation

can be done through a parameter synthesis problem, in which we consider

each observable as a parameter, and try to identify which values of the

observations imply the occurrence of the diagnosis condition. The result

of the synthesis process is a region (i.e., a set of observations) that satisfies

the alarm condition. This requires introducing a parameter uo for each

of the observable variable o in the plant (uo and o must have the same

type). According to Definition 5, given the parametric transition system

P = (V, U, IU , TU), the parameter synthesis problem consists in identifying

the region ω s.t. ω = {γ | Pγ |= γ(φ)}. The property φ in this case consist

of the satisfaction of the temporal condition τ (Section 8.1.2):

φ := G((
∧
o∈O

uo = o)→ τ(x))

To synthesize this region we proceed in two steps. First, given a finite

sequence of observations, we compute the set of reachable states that are

compatible with the observation. Second, we test whether the given set of

reachable states satisfies a given alarm condition.

The first procedure is obtained by extending the plant with a queue of

observations. We attach to the plant a FIFO (First In First Out) queue, in

order to store the observations, and each time step we discard the ones that
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are older than R. In order to properly capture the semantics of bounded

recall, we also need to add one bit of information telling us how many of

the observations in the queue are real observations. This makes sure that

we handle correctly the initial states of the queue. By using this queue, we

are moving the problem from traces to states.

The second point has already been discussed in the perfect recall case,

when labeling the belief states with the alarms that are satisfied or not.

Given a set of states, we check whether they all satisfy the monitor for the

temporal condition τ(ϕ) for the alarm condition ϕ.

Let QueueR,EO
be a transition system that stores the latest R observ-

ables events EO. To synthesize the diagnoser, we proceed as follows:

1. Compute the set Reach of reachable states of P ⊗QueueR,EO

2. For a given condition τ and observation history (o0, · · · , oR) check

whether:

A(o0, · · · , oR) = ∀x. Reach(x) ∧ (obs(x) = (o0, · · · , oR))→ τ(x)

The second step of this procedure suggests us that we can synthesize the

region of observations by quantifier elimination. In particular, by quanti-

fying away the state variables x, in order to obtain an expression of A that

only depends on the observable history (o0, · · · , oR).

This approach is guaranteed to terminate for finite systems. For ex-

ample, we can use BDD-based techniques to compute the symbolic set

of reachable states, and perform quantifier elimination. For infinite state

systems, we cannot guarantee termination, since the computation of the

reachables state might not be possible. Assuming that the reachables have

been computed, the step of theory quantifier elimination is usually ex-

pensive, e.g., LRA [124], and sometimes undecidable, e.g., Arrays [43].

Therefore, depending on the theories used to model the system, we might

be able (or not) to perform synthesis.
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We will discuss the benefits and drawbacks of the up-front computation

of the reachable states, in Chapter 11, when we will talk about temporal

epistemic logic model checking. Indeed, the problem of synthesizing the

alarm region is the same problem of understanding the set of states for

which the epistemic formula Kτ holds: i.e., Kτ is a correct and maximal

alarm. Recall that a correct and maximal alarm is defined as (e.g., for

bounded delay):

G(xAy → O≤dβ) ∧G(xKO
≤dβy → A)

A way to satisfy these constraints is to replace A with KO≤dβ:

G(xKO
≤dβy → O≤dβ) ∧G(xKO

≤dβy → KO≤dβ)

that is trivially satisfied by the knowledge axiom: Kϕ → ϕ. We can do

a similar reasoning for exact-delay and finite-delay. Computing the set

of observations that satisfy Kτ is equivalent to computing the observable

denotation of Kτ .

8.2.2 Example

Let us consider an example with recall R = 0, inspired by the Packet

Utilization Service (Section 3.1.3). Our system has an internal reading x

that is bounded between 0 and 5 during nominal operation. We introduce

a (permanent) fault f , s.t., the value of x starts to steadily increase.

The SMV code for this example is shown in Figure 8.8. The set of

reachables can be symbolically defined as:

Reach(x, f)
∆
= (x ≥ 0) ∧ (¬f → x ≤ 5)

We now assume that the system provides as output an abstraction of the

internal sensor, telling us whether the sensor is in range or not, i.e.,:

obs(x, f, o)
∆
= o↔ (x ≥ 0 ∧ x ≤ 5)
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VAR x: real;

VAR f: boolean;

VAR o: boolean;

INIT x = 0;

INVAR !f -> (0 <= x & x <= 5)

TRANS (f -> next(f)) & (f -> (next(x) = x+1))

Figure 8.8: Example Plant (SMV Code)

we can thus proceed to synthesize the alarm for f :

Af(o)
∆
= ∀x, f. Reach(x) ∧ obs(x, f, o)→ f

Af(o)
∆
= ∀x, f.

(
(x ≥ 0) ∧ (¬f → x ≤ 5) ∧ (o↔ (x ≥ 0 ∧ x ≤ 5))→ f

)
we can quantify away the state variables x and f (e.g., by using Math-

SAT [53]) and obtain:

Af(o) = ¬o

8.2.3 Magicbox

Let us consider the previous magicbox, and a diagnoser with recall 2. Recall

2 means that we can use the current observation together with the previous

2. This example is relatively small so that we can simulate what the

synthesis algorithm would do. By looking at Figure 6.4, we can compute

all traces of length 3. The task is simplified by the fact that any cell can

be an initial state. From the set of traces, we compute the observations,

expressed over the X and Y observers (Figure 8.9).

The alarm associated with the specification

ExactDelK(AB1, βB1, 0, system, True) depends on the observations

associated with the state B1, below we show which (and how many)

observations are available to the diagnoser:

• Time 0: (x, y)

141



CHAPTER 8. SYNTHESIS

States

t0 t1 t2

A0 B1 A1

A1 B2 C1

A2 C0 A0

A2 C0 B2

B0 A2 C0

B1 A1 B2

B2 C1 B0

C0 A0 B1

C0 B2 C1

C1 B0 A2

Observations

t0 t1 t2
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Figure 8.9: Traces and Observations for Recall 2

• Time 1: (x, y) (x, y)

• Time 2+: (x, y) (x, y) (x, y)

Initially, only the current state is used. Afterward, we slowly fill-up the

memory of the diagnoser. Since the diagnoser has recall 2, any trace longer

than two steps will have exactly 3 observations. We can see that even with

recall 0, we can always distinguish the state B1, since it has the unique

observation (x, y). Therefore, the alarm condition is system diagnosable

for any recall R ≥ 0.

For ExactDelK(AC1, βC1, 0, trace, True) we have:

• Time 0: (x, y)

• Time 1: (x, y) (x, y)

• Time 2+: (x, y) (x, y) (x, y)

we can see that with recall 0 we cannot distinguish between C1 and A1. This

tells us that with recall 0, the specification is not even trace diagnosable.

Recall 1 is sufficient for trace diagnosability, since there is no ambiguity
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in the observation. Notice that we cannot gain system diagnosability even

if we increase the recall. This is because we will always have uncertainty

in the initial states, since we only performed one observation. The Alarm

AC1 is defined in terms of the two observations o1 = (x, y), o0 = (x, y):

AC1(x0, y0, x1, y1, x2, y2) = ¬x0 ∧ y0 ∧ x1 ∧ ¬y1

8.3 Experimental
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Figure 8.10: Perfect-Recall synthesis run-time with different observable percentages. (Un-

constrained Init)

To understand the applicability of both approaches, we run an exper-

imental evaluation on a set of finite state magicboxes2. In particular, we

consider magicboxes varying in size from 10x10 to 90x90 (i.e., models with

more than 8000 states). Since the magicboxes provide long paths, we con-

sider two classes of problems. In the first class, any state can be an initial

2Tools and benchmarks are available at http://marco.gario.org/phd/

143

http://marco.gario.org/phd/


CHAPTER 8. SYNTHESIS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10  20  30  40  50  60  70  80  90

R
u
n
ti

m
e
 (

s)

Size (N)

90%
60%
30%

Figure 8.11: Perfect-Recall synthesis run-time with different observable percentages.

(Constrained Init)

state. In the second class, we fix the column position of the initial states.

Constraining the initial state makes counter-examples become deeper (i.e.,

longer counter-examples). On the other hand, it solves some uncertainty

concerning the initial states. Finally, we also consider three different de-

grees of observability: 30%, 60% and 90%. This means that the given

percentage of columns and rows are observable. The diagnosis condition

that we verify is a 0-delay property, that requires knowing whether the ball

is in a given cell.

Perfect Recall First of all, we study the result of the synthesis in the

perfect recall case. In this case, we use a BDD-based engine, thus we

expect the procedure to suffer from the increase of state variables (even

when using techniques such as dynamic reordering). The other parameter

that can have an impact on this is the number of observable variables. The

more observable information is available, the more states will be created

144



8.3. EXPERIMENTAL

 1

 10

 100

 1000

 1  10  100  1000

Fr
e
e
 I
n
it

Init X

TO
TO

 1

 10

 100

 1000

 1  10  100  1000

Fr
e
e
 I
n
it

Init X

TO
TO

Figure 8.12: Perfect Recall: Effect of Init constraints on synthesis time.

by the belief explorer. This is true to a certain degree, since if everything

is observable, then the belief explorer will coincide with the system itself.

Figures 8.10 and 8.11 show the runtime for the benchmarks with dif-

ferent degrees of observability, respectively when considering no constraint

in the initial state, or constraining the initial column. The exponential

impact of the size of the number of observables is clearly visible in both

cases. Moreover, we can see that the synthesis algorithm is able to syn-

thesize the diagnoser for magicboxes of size 90x90 in less than 10 minutes

if we only have 30% observability, but with 90% we start running into

time-outs. The plots are smoothed to show the general trend. By looking

at the data, we can see that the actual runtime is impacted by both the

dynamic reordering of the BDD and by the garbage collection operations,

and it grows less smoothly. The impact of constraining the initial states is

further demonstrated in Figure 8.12. By constraining the initial state, the

belief explorer will have more information about the possible starting state

(fewer initial belief states). In turn, this leads to less uncertainty and fewer

belief states. The impact is constant, but not particularly significant.
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Bounded Recall For the bounded recall case, we need to consider multiple

sizes for the recall window. In particular, we consider recall 0 to 5. This

brings us to a situation in which there are many more observable variables

than non observable ones. For example, in a system with 100 variables

and observability 30%, we have 30 observable variables per step. Thus, at

recall 5 there are 150 variables that are used to recall the observation.

Figures 8.13 and 8.14 show the impact of increasing the observability,

in the case of 0-recall, respectively, for the class without initial constraints

and the one with initial constraints. It is immediately clear that the initial

constraints, have a significant impact on this technique. In particular, we

obtain counter-examples that are longer, and thus the synthesis engine

needs to perform more work to build the region. Therefore, we notice

that the depth of the counter-examples is a key factor for our synthesis

procedure.
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Figure 8.13: 0-Recall synthesis run-time with different observable percentages (uncon-

strained Init)
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Figure 8.14: 0-Recall synthesis run-time with different observable percentages (con-

strained Init)

To study the impact of increasing the recall in the synthesis runtime, we

only consider the class of problems without initial constraints and 30% of

observability. Figure 8.15 tells us that going from recall 0 to recall 5 yields a

significant increase in runtime. This suggests that in order to deal with long

recall periods, we need to find a way to minimize the amount of information

that we need to store. A possible idea is to exploit the sensor placement

problem (Chapter 7.2) in order to understand which observations need to

be stored in order to achieve diagnosability. In fact, it might turn out that

a given observable is irrelevant and thus we do not need to store its value

at all. This line of research is left for future work.

Comparison Finally, we compare the two techniques. When looking at

the data, we need to take into account that the underlying technology

for the two approaches is considerably different. Perfect recall synthesis

is using BDDs, while bounded recall is using a SAT solver. In particu-
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Figure 8.15: Synthesis run-time for different recall values (unconstrained Init – 30% Obs)

lar, Figures 8.16 the comparison between the two classes of models, and

how in one case the perfect recall synthesis algorithm can outperform the

bounded recall one (for recall 0). The red boxes show the class with un-

constrained initial state, where the counter-examples are shallow, while the

blue crosses represent the class with deep counter-examples. This shows

that perfect recall not only provides more information than the bounded

recall approach, but in some cases can even be synthesized faster.

8.4 Chapter Summary

Having a formal modal of the plant and formal specifications make it pos-

sible to perform automated synthesis of the FDI. In a sense, this is the

ultimate step in our formal approach for FDI design. The main advantage

of synthesis is the reduction in the design time. Being able to synthesize

an FDI makes it possible to explore different strategies and designs with
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Figure 8.16: PR vs BR: Unconstrained Init (Red Boxes) - Constrained Init (Blue Crosses)

a short feedback loop. Moreover, changes to the plant or specification can

be automatically addressed.

One of the drawbacks of synthesis is that it is hard for a human to un-

derstand the rationale behind the synthesized component, for example in

all the settings where human certification is needed, or when modifications

want to be introduced manually. In these situation, we still believe that the

synthesis can play an important role, in order to guide the design. On one

hand, it is possible to use synthesized components as placeholders while

the manual FDI is being designed. This makes it possible to test/study the

system together with the FDI, and explore other aspects (e.g., recovery).

On the other hand, since the FDI is a deterministic component, the good-

ness of the FDI designed by hand can be certified by equivalence checking.

In fact, all correct and maximal diagnosers for the same specification must

have the same input-output behavior.

In this Chapter, we presented two techniques for automated synthesis.

The main difference between the two approaches is the amount of recall of
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the diagnoser, and thus the shape of the diagnoser. In the case of perfect

recall, we build an automaton, in order to account for the growing history

of observations. In the bounded recall case, we show that we can compactly

represent the diagnoser as a combinational circuit.

The technique we presented for bounded recall work on both finite and

infinite state systems. The techniques for perfect recall, however, cannot

be applied directly to infinite state systems, and we leave their extension

for future work. A simple way of achieving perfect recall on infinite state

systems is to abstract the system and then apply finite state techniques.

This approach will be discussed in the next Chapter, when considering

Timed Failure Propagation Graphs.

Finally, we demonstrate both algorithms on several examples, and ex-

perimentally study their applicability. In particular, we show that to apply

bounded recall for long windows, future work will have to identify ways to

minimize the number of variables being introduced in the model.
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Chapter 9

Timed Failure Propagation Graphs

Timely detection, identification and recovery of faults is an essential com-

ponent for the correct operation of complex critical systems. Failures typi-

cally originate from basic faults, can manifest with delays, and can interact

with each other over time in very complex ways. Timed Failure Propaga-

tion graphs (TFPGs) have been introduced in [105] as a framework to

capture the temporal propagation of faults in complex systems, and to

support important run-time activities such as diagnosis and prognosis. In-

tuitively, a TFPG is a graph-like model that accounts for the temporal

progression of failures in dynamic systems and for the causality between

failure effects, taking into consideration time delays, system reconfigura-

tion, partial observability, and sensor failures.

In practice, TFPGs have been applied in several industrial contexts. In

aerospace, NASA [96] positively evaluated them in the context of diagnos-

tic technology for manned aircraft. Boeing has been using them [131] for

performing maintenance monitoring of systems; in particular, in [6] they

present an integrated vehicle health management system based on TFPGs.

Furthermore, the European Space Agency has funded projects [76, 77]

where TFPGs are used as the basis for the specification of fault detec-

tion and isolation components [25]. Recently, in addition to monitoring of
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safety critical systems, there has been some interest in using TFPGs for

performing software monitoring [72, 71]. A nice overview of applications

of TFPGs is given in [145].

As in any model-based diagnosis approach, however, the quality of the

diagnosis strongly depends on the quality of the model. Unfortunately,

the practical application of TFPGs is currently clashing against the lack of

suitable validation methods and tools. TFPGs are usually built manually

by safety engineers, based on their own knowledge of the relations between

faults in the system, and based on safety artifacts such as Fault-Trees [156].

In the few cases in which they can be generated from a system model, there

is no way for the users to modify or adapt them and still be able to certify

their quality.

To be able to use the TFPG as an abstraction of the system to diagnose,

the TFPG needs to capture all interesting behaviors of the system. In Sec-

tion 9.1 we present a validation approach based on Satisfiability Modulo

Theory (SMT). This makes it possible to study the behavior of the TFPG,

perform diagnosability analysis and use the TFPG as a model for online di-

agnosis. We present several reasoning problems, and provide experimental

data to demonstrate the feasibility of the approach.

In Section 9.2, we show how to use the TFPG as an abstraction of

the system, and discuss techniques for performing diagnosability analysis

on an abstraction of the system. In order to do so, we first introduce a

transformation technique that reduces a TFPG into a discrete-time tran-

sition system. This technique allows us to apply the techniques discussed

in the previous chapter for discrete time systems on timed systems, and it

is at the base of the FAME project (Chapter 10). Afterwards, we discuss

the possibility of using a diagnoser for the TFPG for the original plant

(diagnoser reuse), by introducing the concept of cross-diagnosability.

The contributions of this Chapter are:
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• A symbolic technique for validation of TFPG based on SMT (origi-

nally presented in [31]);

• A translation from TFPG to Transition System (in collaboration with

Benjamin Bittner);

• Cross-Diagnosability approach for reasoning about diagnoser reuse

and abstractions of the plant.

9.1 TFPG Validation

TFPGs are usually validated via extensive testing, and no approach exists

for performing a more exhaustive analysis and validation of the model.

However, since TFPGs are used as a basis for diagnosis, it is fundamen-

tal to be able to establish their formal properties, and to gain confidence

in their adequacy — similarly to other model-based approaches, the ef-

fectiveness of the reasoning relies on the accuracy of the model. Interest

in validation is witnessed in [147], that introduces a data-driven method

called alarm-sequence maturation in order to correct errors in the causality

relations of the model. This method, however, requires data to be already

available, and thus can be applied only after the overall system has been

put into production. In many contexts, e.g., aerospace, it is not possible

or desirable to wait until deployment of the system to validate the TFPG.

Thus preliminary validation should be performed in the design phase.

In this chapter, we propose a practical approach to support the anal-

ysis and validation of TFPG models. We define some important design-

time queries, and show how they can be efficiently answered by performing

symbolic reasoning. Our approach is based on a logical characterization of

TFPGs, and cast in the field of Satisfiability Modulo Theory (SMT) [12].

The set of possible executions of a TFPG is modeled as a formula in SMT.
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The reasoning tasks are expressed in form of logical queries in SMT, and

the implementation is based on the use of an efficient SMT solver. We

explore the problems of validation, refinement testing, and diagnosis and

diagnosability. The approach has been implemented and evaluated experi-

mentally, and it is able to leverage symbolic SMT-based techniques to deal

with the state-space explosion problem. In this work, we focus only on

three possible analyses, but using an SMT characterization of the TFPG,

it becomes possible to easily define new analyses, or implement other more

classical problems, such as prognosis.

Our approach is complementary to the available tools, such as the state-

of-the-art FACT tool-set [104], where limited support for model validation

is provided. In FACT, for example, it is not possible to provide a condition

on a TFPG and obtain a complete execution satisfying it automatically,

nor verify properties against the TFPG. One could use our approach to

test the correctness of the TFPG model, and then perform diagnosis and

prognosis using the FACT tool-set.

9.1.1 Satisfiability Modulo Theory

This work on validation of TFPGs leverages the impressive advancement

in Satisfiability Modulo Theory (SMT) (Section 2.1). We use the theory of

linear arithmetic over the real numbers (LRA). Difference logic (RDL) is

the subset of LRA such that atoms have the form xi − xj ./ c. We write

x − y ∈ [a, b] meaning the formula (x − y) ≥ a ∧ (x − y) ≤ b. If a is −∞
then the first conjunct is omitted and similarly, if b is +∞ then the second

conjunct is omitted.
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9.1.2 Timed Failure Propagation Graphs

The Battery Sensor System (BSS) (Figure 9.1) will be our running example.

The example is explained in detail in Section 4.5, here we recall the main

ideas. The BSS provides a redundant reading of the sensors to a device.

Generator 1

Generator 2

Battery 1

Battery 2

Sensor 1

Sensor 2

Switch

Generator IN

Generator IN

Sensor OUT

Sensor OUT

Mode Selector

Device

Power
Control
Data

Figure 9.1: Battery Sensor System schema

Internal batteries provide backup in case of failure of the power supply.

The safety of the system depends on at least one of the sensors providing

a reading at any time.

A failure mode is a failure of a component of the system. A component

might fail in more than one way, therefore having more than one failure

mode associated with it. We call fault the occurrence of a failure of the

component. A fault in a component will produce anomalies in the system

behavior, that we call discrepancies. In the BSS, we define one failure

mode for the generator, and one for the sensor. The generator can fail and

stop supplying power (GOff), and the sensor can stop providing a reading

(SOff). After the generator fails, the battery will start discharging. When

the battery is exhausted, the attached sensors will stop working. Examples

of discrepancies are:

• Absence of power from the generator,

• Battery level going below a threshold,
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G1Off

G2Off

G1DEAD

G2DEAD

B1LOW

B2LOW

B1DEAD

B2DEAD

S1NO

S2NO

S1Off

S2Off

SysDEAD

Monitor

Monitor
Monitor

[0, 0]{∗} [0, 100]{P, S1} [5, 10]{P, S1} [0, 1]{P, S1}

[0, 0]{∗}

[0, 1]{∗}
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[0
, 0

]{∗
}

[0, 1
]{∗}

[0, 1]{S
1}

[0,
1]{S2}

Figure 9.2: TFPG for the BSS example.“∗” is used to indicate all modes: {P, S1, S2}

• Sensor not providing a reading.

Some discrepancies have a monitor attached (i.e., a sensor), and we call

them monitored discrepancies. In our example, we monitor the level of the

battery, and are warned when the level goes below a certain threshold. Not

all discrepancies can be monitored, due to physical or design limitations.

Intuitively, we can monitor all those information that can be captured and

analyzed with sensors. The semantics of monitored discrepancies makes it

possible for monitors to fail. In this case, the monitor can provide both

false positive and false negative information.

System modes (simply modes) are configurations of the system that are

relevant for capturing the propagation of faults. In the BSS the sensors

are powered by their own battery, however, in case of faults, one battery

can power both. We define 3 modes: Primary, Secondary1, Secondary2.

If Generator 1 fails while the system is powered by Generator 2, there will

be no impact on the system.

Timed Failure Propagation Graphs (TFPG) were introduced in [105]

to model the progression of faults in a system and perform online diag-

nosis and prognosis. A TFPG is a directed graph model where nodes

represent failure modes and discrepancies. Edges represent the causality
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between nodes, and provide information on the delay in the propagation.

By labeling the edges with system modes, we can encode switching-systems

in which different propagations are possible in the different modes. Fig-

ure 9.2 shows a TFPG for the BSS. Boxes with dotted lines are failure

modes, whereas discrepancies are either circles (OR discrepancies) or boxes

(AND discrepancies) with solid lines. B1LOW , B2LOW and SysDEAD are

monitored discrepancies, thus we show the monitor graphically (with dia-

monds). Edges include information on the propagation time and modes in

which they are active.

The non-determinism on the propagation time between G1DEAD and

B1LOW models the fact that we do not know the charge level of the bat-

tery until we get to a critical level (BLOW ). Additionally, we allow for

a small non-determinism between the activation of the discrepancy, the

absence of output (S1NO,S2NO) and the failure of the system, in order to

model the possibility of the device to handle incorrect sensor readings. The

uncertainty on the propagation time between BLOW and BDEAD is moti-

vated by the fact that the depletion of the battery will take more time if

we are in the Primary mode rather than in the Secondary1 (or Secondary2)

mode (see charge update rule in Section 4.5).

Definition 28. TFPG. A TFPG is a structure G =

〈F,D,E,M,ET,EM,DC,DS〉, where F is a non-empty set of fail-

ure modes; D is a non-empty set of discrepancies; E ⊆ V×V is a set

of edges connecting the nodes V = F ∪ D; M is a non-empty set of

system modes. At each time instant the system can be in only one mode;

ET :E→ I is a map that associates every edge in E with a time interval

[tmin, tmax] ∈ I indicating the min/max propagation time on the edge

(where, I ∈ R+ × (R+ ∪ {+∞}) and tmin≤ tmax); EM : E → 2M is a map

that associates to every edge in E a set of modes in M . We assume that

EM(e) 6=∅ for any edge e∈E. DC :D→ {AND, OR} is a map defining the
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type; DS : D → {M, I} defines whether the discrepancy is monitored (M)

or not (I – inactive).

Failure modes are always root nodes, and all discrepancies must have

at least one incoming edge.

The semantics [4] of TFPGs says that the state of a node indicates

whether the failure effects reached that node. A failure propagates through

an edge e = (v, w), only if the edge is active throughout the propagation,

that is, from the moment v activates to the time w activates. An edge

e is active if and only if the current mode m of the system is compatible

with the modes of the edge (m ∈ EM(e)). For an OR node w and an edge

e = (v, w) ∈ E, once a failure effect reaches v at time t, it will reach w

at a time t′, where e.tmin ≤ t′ − t ≤ e.tmax and the edge e is active

during the whole propagation. On the other hand, the activation period

of an AND node v′ is the composition of the activation periods for each link

(v, w) ∈ E. If an edge is deactivated any time during the propagation (due

to mode switching), the propagation stops. Links are assumed memory-

less thus a failure propagation is independent of any (incomplete) previous

propagation. Finally, once a node activates, it changes permanently, and

will not be affected by any future failure propagation.

In this chapter, we restrict ourselves to TFPGs that satisfy the following

two conditions:

1. Cycles are strongly causal

2. The mode is frozen

Given a cyclic path in the TFPG, we say that it is strongly causal iff the

sum of all tmin (of the edges in the path) is greater than zero. In other

words, the cyclic path cannot propagate instantly. This is usually the

case in physical systems, in which failure takes time to propagate. On the
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contrary, when modeling logical systems, the propagations might capture

a relation between discrepancies, and thus require to be instantaneous.

The frozen mode assumption requires that the mode of the TFPG is

constants, i.e., we fix any of the available modes beforehand, and we as-

sume that it does not change for the entire execution of the system. This

assumption has been validated by domain experts, and it is justified by

the fact that most of the reasoning (e.g., diagnosis) is of interest when

the system is in a stable state. Given the number of system changes and

possibly unpredictable interactions, modeling of fault propagation during

mode-switching is not considered in practice.

9.1.3 TFPG as an SMT formula

A TFPG can be encoded into an SMT formula using the RDL theory. The

encoding closely follows the definition of TFPG, and has been extensively

validated using existing case-studies, and randomly generated TFPGs.

The encoding is divided into two parts. The first part, captures the

behavior of the TFPG, and captures all valid executions of the TFPG.

The formula capturing this part is called ftfpg. The second part, deals

with the observability issue, and allows us to distinguish between monitored

and unmonitored discrepancies. This part (the observable TFPG – otfpg)

is built using ftfpg as a building block.

ftfpg. Each node in the TFPG is associated to a state variable and an

activation time-point. The semantics of the TFPG is encoded by defining

constraints for the OR and AND nodes.

Given a TFPG G we create a formula ftfpg( ~ud, ~udt,m), where ~ud and
~udt are vectors that define, respectively, the state (active or not) and the

activation time of each node in G, and m is the current system mode. ~ud

and ~udt are unobservable information and for brevity we combine them in
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a single vector ~u = ~ud ∪ ~udt. Let us define M(e,m) =
∨
µ∈EM(e)(m = µ)

as an expression defining whether an edge e is compatible with the mode

m; ftfpg is defined as:

ftfpg(~u,m) =
∧

v∈D. DC(v)=OR

Bor(v,m) ∧ Tor(v,m) ∧

∧
v∈D. DC(v)=AND

Band(v,m) ∧ Tand(v,m)

Bor(v,m) = ~ud(v)↔
∨

(w,v)∈E

[ ~ud(w) ∧M((w, v),m)]

Band(v,m) = ~ud(v)↔
∧

(w,v)∈E

[ ~ud(w) ∧M((w, v),m)]

Tor(v,m) = ~ud(v)→ [∨
(w,v)∈E

(
~ud(w) ∧ ( ~udt(v)− ~udt(w)) ∈ ET ((w, v))

)
∧

∧
(w,v)∈E

(
~ud(w)→ ( ~udt(v)− ~udt(w)) ≤ tmax((w, v))

)
]

Tand(v,m) = ~ud(v)→ [∧
(w,v)∈E

(
~ud(w) ∧ ( ~udt(v)− ~udt(w)) ≥ tmin((w, v))

)
∧

∨
(w,v)∈E

(
~ud(v) ∧ ( ~udt(v)− ~udt(w)) ≤ tmax((w, v))

)
]

The encoding is composed of a Boolean part (Bor, Band), that captures

the structure of the TFPG, and of a Temporal part (Tor, Tand), that cap-

tures the temporal relation between discrepancies. Intuitively, the Boolean

part expresses the possible combinations of nodes that can be active, while
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the temporal part encodes the temporal relation between their activation.

For each OR and AND, we express constraints on both the Boolean and

temporal part.

In Bor we state that a node is active if at least one of the predecessors is

active and the mode is compatible. In Band we require all predecessors to

be active. Tor states that given an active node, there must be at least one

predecessor with an activation time that is compatible with the tmin/tmax.

We additionally require that all active predecessors nodes have an acti-

vation time that is compatible with the tmax. Finally, Tand encodes that

if a node is active, all the predecessors are active with timings satisfying

the tmin constraint, and that at least one satisfies the tmax. Note that the

second part of Tand is similar to that of Tor. However, the key difference

is that in the AND case, we allow all but one active discrepancies to violate

the tmax constraint. The failure modes are left unconstrained.

A model for ftfpg represents a possible execution of the TFPG. This

encoding is polynomial in the number of nodes in the TFPG. In particular,

it uses O(|E|) theory (RDL) atoms.

otfpg Diagnosis requires the ability to reason on the monitored (i.e., ob-

servable) discrepancies. In order to do so, we extend the encoding by

adding new variables for the monitors. The monitor has the same state

and activation time as the discrepancy, however, in order to be able to con-

sider monitoring faults, these constraints are conditioned to a set of health

variables ~h. ~o = ~od∪ ~odt are the observable variables, and otfpg(~o, ~u,m,~h)

is the TFPG with monitors:

otfpg(~o, ~u,m,~h) = ftfpg(~u,m) ∧∧
v∈D.DS(v)=M

~h(v)→ ( ~od(v) = ~ud(v) ∧ ~odt(v) = ~udt(v))
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9.1.4 SMT-based Reasoning

The SMT encoding can be used to perform reasoning on the TFPG. We

distinguish between reasoning tasks that can be done at design time or

runtime (i.e., when a system is running). The objective of design time

reasoning is to help the designer validate the TFPG, i.e., show that the

TFPG captures the situations of interest. We focus on design time analysis,

but also provide an example of how to perform a runtime task (diagnosis).

The design time reasoning task that we consider are the following: model

validation, refinement testing and diagnosability. All these problems can

be handled in a uniform way by leveraging the SMT solver, without the

need of defining multiple ad-hoc algorithms.

Partial Traces The SMT encoding of the TFPG represents the set of all

possible executions (i.e., traces) of the TFPG: every model of the formula is

a trace of the TFPG (and vice versa). A trace, in this context, is a complete

assignment to the activation state and time variables, i.e., whether and

when the discrepancy activated.

The SMT solver can provide provide us with a trace of the TFPG, that

also satisfies additional constraints on how this trace should look like. E.g.,

we can ask for a trace of the BSS in which the discrepancy B2LOW is active

by using the formula τ(~u,m) = ud(B2LOW ). Such a trace can be obtained

from the SMT solver by asking for a model of:

ftfpg(~u,m) ∧ τ(~u,m)

A model is an assignment of concrete values to all the ~ud, ~udt and m

variables, telling which discrepancies and failure modes are active, and their

activation time. If no model exists (i.e., formula is unsatisfiable) there is no

trace in the TFPG that satisfies the given requirement. A partial trace can

be defined by describing the activation of some discrepancies without the
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need of specifying the behavior of all nodes. The SMT solver will provide

a complete trace that satisfies the constraint τ , thus enabling the user to

explore the behavior of the TFPG. Any LRA formula over the mode, state

and time-point variables of the TFPG can be used to perform querying (in

place of τ). This provides a wide degree of expressiveness.

Model Validation Building on the idea of partial traces, we can ask

whether some behavior is possible or not in the TFPG. Knowledge of the

domain and of the original model can be used to define properties that

we expect the TFPG to satisfy. In the BSS, the failure of the genera-

tor G1 may lead S1 to stop working. However, if the system is in mode

Secondary2 the failure of G1 will not have any impact on S1. We call

this type of property a possibility. We are interested in checking that some

behaviors are possible in the TFPG. To do so, we use the concept of partial

traces, and ask whether there exists a trace in the TFPG that satisfies our

requirement. This is done by checking the satifiability of:

ftfpg(~u,m) ∧ ~ud(G1Off) ∧ ~ud(S1NO)

An example of possibility checking is whether all nodes of the TFPG

can eventually be activated. E.g., it might be that not all nodes can be

activated in a given mode. A node that cannot be activated in any mode

represents a modeling error. Such nodes can be found by running multiple

possibility checks, optionally specifying in which modes we expect the node

to be enabled. E.g., we cannot activate the discrepancy B1LOW in the mode

Secondary2, thus the following is unsatisfiable:

ftfpg(~u,m) ∧ ~ud(B1LOW ) ∧m = Secondary2

The counter-part of possibility is necessity. In the BPSS we know that

a battery cannot discharge if the associated generator is working. This
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property can be specified as follows. For B1LOW to be active, it is necessary

for G1Off to be active. We check the validity of:

ftfpg(~u,m)→
(
~ud(B1LOW )→ ~ud(G1Off)

)
In words, every trace of the TFPG in which B1LOW is active requires G1Off

to be active.

The purpose of model validation is to increase the confidence on the cor-

rect behavior of the model. Let us introduce an artificial bug, and modify

the TFPG of the BSS so that the mode on the edge (B2DEAD, S1NO) be-

comes Secondary1. This implies that there is no propagation between those

two nodes in mode Secondary2. This mistake could be detected with the

following possibility query: It is possible for the single failure mode G2Off

to cause SysDEAD. Therefore, we want to find a trace in which G2Off and

SysDEAD are active, but all other fault are not active.

ftfpg(~u,m) ∧ ¬( ~ud(G1Off) ∨ ~ud(S1Off) ∨ ~ud(S2Off))

∧ ~ud(G2Off) ∧ ~ud(SysDEAD)

This execution is possible in the original TFPG (in the Secondary2

mode) but not in the modified one.

Refinement Changes in the models are a common activity during devel-

opment. Thus, it is important to show some relation between the original

model and the modified one. In the BSS example, there is uncertainty

on the propagation time between B1LOW and B1DEAD due to the different

discharge rates of the battery in the primary and secondary mode. This un-

certainty can be removed by adding two intermediate discrepancies (B1P ,

B1S) that have an incoming edge from B1LOW and an outgoing edge to

B1DEAD. Intuitively, B1P can be reached only in mode Primary, thus

providing an exact value for the propagation (ET = [10, 10]) (similarly for
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B1S in Secondary1 with ET = [5, 5]). We need to check that this new

TFPG (BSS2) refines the original TFPG (BSS1). Therefore, we define a

mapping between the two saying that all nodes that exist in both TFPGs

must have the same state and activation times, and check that each exe-

cution in the new TFPG (BSS2) has a corresponding execution in the old

one (BSS1), i.e., it is a refinement.

B1LOW B1DEAD
[5, 10]{P, S1}

B1LOW

B1S

B1P

B1DEAD

[5,
5]{S1}

[10, 10]{P}

[0.0]{∗}

[0,
0]{∗}

Figure 9.3: TFPG Refinement

An example of mapping is defined by the following relation:

γ(~u1, ~u2) =
∧
v∈V

( ~ud1(v)↔ ~ud2(v)) ∧ (9.1)

( ~ud2(v)→ ~udt1(v) = ~udt2(v))

Given two TFPGs G1, G2 and a (partial) mapping γ(~u1, ~u2) between

their nodes, we say that G1 refines G2 if every trace of G1 can be mapped

to a trace of G2:

∀~u1,m.ftfpgG1(~u1,m)→∃~u2.(γ(~u1, ~u2) ∧ ftfpgG2(~u2,m))

In practice, we use the negation of the formula above. In this way, we can

obtain a counter-example to the refinement, i.e., a trace that belongs to

the first TFPG but that cannot be mapped to any trace of the second:

ftfpgG1(~u1,m) ∧ ∀~u2.¬(γ(~u1, ~u2) ∧ ftfpgG2(~u2,m))

Having a concrete counter-example is useful for debugging.
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Diagnosis and Diagnosability In the context of TFPG, the goal of diagno-

sis is to understand which failure modes caused the observed discrepancies.

This is achieved by generating all possible executions consistent with the

observations and considering all the sets of faults that occur in those exe-

cutions (Model Based Diagnosis [134]).

The concept of diagnosis condition (Section 5.1) can be generalized to

the setting of TFPGs. A diagnosis condition β(~u) is a relation on the

unobservable discrepancies and time points. In the most basic case, a

diagnosis condition is a single failure mode: β(~u) = ~ud(fm). In the gen-

eral case, a state condition captures a situation of interest in the sys-

tem. E.g., the fact that a failure mode occurred in a given time-frame:

β(~u) = ~ud(fm)∧ 5 ≤ ~udt(fm) ≤ 10 or that two discrepancies activated in

a particular order:

β(~u) = ~ud(D1) ∧ ~ud(D2) ∧ ~udt(D1) ≤ ~udt(D2)

To perform diagnosis, we ask if a given diagnosis condition is possible

given the observations provided by the monitored discrepancies. This basi-

cally boils down to a possibility check in which we define τ = β(~u)∧obs(~o),
where obs(~o) denotes the observation. In the setting of FDI alarms (Sec-

tion 5.2) we require the diagnoser to be sure about the occurrence of a

diagnosis condition. Therefore, we require that there is only one pos-

sible explanation for the given observation. Thus, instead of checking

possibility, we check necessity. We can ask whether given the observ-

able trace obs(~o) = ~od(SysDEAD) ∧ ~odt(SysDEAD) = 10 (SysDEAD was

activated at time t = 10) it is necessary for S1Off to have been acti-

vated before time t = 10: β(~u) = ~ud(S1Off) ∧ ~udt(S1Off) ≤ 10. If

otfpg(~o, ~u,m,~h) ∧ obs(~o) ∧ ¬β(~u) is unsatisfiable, the diagnosis condition

is the only possible explanation for the observation, otherwise we are pro-

vided with a counter-example. The observable trace obs can be any LRA
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formula, thus we can express complex patterns of observations, e.g., tem-

poral uncertainty: obs = 5 ≤ ~odt(SysDEAD) ≤ 10.

At design time we want to have some guarantee on the effectiveness

of the diagnoser at runtime. This can be achieved by performing diag-

nosability analysis. We generalize the twin-plant construction [101] (see

Chapter 7), in order to find a critical-pair, i.e., a pair of traces that have

the same observations s.t. one satisfies the condition but the other does

not. The existence of a critical pair is tested with the following query:

otfpg(~o, ~u1,m,~h1) ∧ otfpg(~o, ~u2,m,~h2) ∧ (9.2)

β(~u1) ∧ ¬β(~u2) ∧Healthy(~h1,~h2)

notice, that we enforce some relation on the health variables of the moni-

tors. Usually, we are interested in checking diagnosability when all sensors

are working correctly. However, we can explore other configurations for the

health variables. For example, we can explore how many sensor failures we

can afford before a given diagnosis condition becomes non-diagnosable by

changing the relation Healthy: e.g., require that at most 2 monitors can

fail.

This basic approach to diagnosability requires that all observations have

been made. Due to the importance of timing in detection and recovery of

faults, it might not be possible to wait until all observations have been

made. In particular, we want to know which observations are sufficient to

distinguish a faulty trace. This can be checked by performing the diag-

nosability analysis for subsets of observables. The observable variables are

partitioned in two sets: ~oA, ~oB. Intuitively, we ask that the two systems

are observationally equivalent only for a given subset of the observable

discrepancies (~oA). Thus, the diagnosability test becomes:

otfpg(~oA ∪ ~oB1, ~u1,m,~h1) ∧ otfpg(~oA ∪ ~oB2, ~u2,m,~h2) ∧

β(~u1) ∧ ¬β(~u2) ∧Healthy(~h1,~h2)
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If no critical pair exists in this case, we do not need to wait for the other

observation to understand whether the state condition occurred. This tech-

nique can also be used to search for sets of sensors that are sufficient to

guarantee diagnosability [26] (Chapter 7). Since the above formula is un-

satisfiabile if there is no critical pair, unsat-core extraction techniques can

be used to minimize the number of used observable variables.

9.1.5 Experimental Evaluation
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Figure 9.4: Scalability of the Refinement and Diagnosability. The “TO” line marks the

examples that reached the timeout.

The techniques described in this paper have been implemented within

the xSAP tool-set [24, 158], by relying on the pySMT [89] library for SMT

formulae manipulation and integration with SMT solvers. The tool is able

to generate partial traces for a TFPG, test possibility and necessity of

arbitrary conditions, check refinement, and perform diagnosis and diag-

nosability. Due to the lack of publicly available TFPGs, we evaluated the

scalability of the approach on a benchmark of randomly generated TFPGs 1

Our approach has been evaluated on two sets of experiments: refinement

and diagnosability. For the refinement benchmarks we take a TFPG and
1A dedicated version of the tool and benchmarks are available at http://marco.gario.org/phd/
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derive a positive and a negative refinement instance. The solver is asked

to verify whether those instances are refinements of the original TFPG.

The transformation for the positive case requires picking a node of the

TFPG, removing it and reconnecting the predecessors with the successors

in a suitable way. Negative examples are obtained in a similar way, but

we modify the propagation intervals to make them incompatible with the

original ones. Since the check of refinement involves a quantifier alterna-

tion, we want to minimize the number of variables, and thus optimize the

formula by inlining whenever possible. For the diagnosability problem, we

test diagnosability of each failure mode in the TFPG, assuming that all

sensors are healthy. We run our experiments using Z3 [66] as SMT Solver

on an Intel i7 2.93GHz, using a time-out of 300 seconds and memory-out

of 2GB for all experiments. The left plot of Figure 9.4 shows the runtime

of the refinement testing when we increase the size of the TFPG, while the

right plot shows the runtime for the diagnosability testing. The runtime

of the diagnosability check increases quickly, since we are using the twin-

plant construction: for every additional node in the TFPG we add four

new variables to the problem.

The industrial TFPGs, to which we have access, are trivially analyzed by

our approach. In the literature [96], TFPGs with 400 nodes are considered

medium size, having more than 1000 nodes is uncommon. Therefore, our

benchmarks consider examples that are reasonably bigger than commonly

developed TFPGs. These experiments show that we are able to analyze

huge TFPGs in a reasonable time; hence, we believe that these techniques

could be integrated in the design process loop, providing quick feedback

to the designer. The choice of using the number of nodes of the TFPG

as indicator of its complexity is justified by previous work [3] where the

algorithmic complexity of the reasoning algorithm is defined in terms of

the number of nodes. However, other factors might have an impact on
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the complexity of a TFPG, and finding a good metric is an open research

question.

9.2 TFPG as an Abstraction of the Plant

The analysis discussed in the previous Section was focused on the TFPG

in isolation. However, TFPGs are used to capture the behavior of a plant,

and can be considered as an abstract version of the plant. The plant is

abstracted in order to focus on one particular aspect of the system: failure

propagation time. The abstraction is simpler than the original system. By

using a simpler model, we can improve the performance of the reasoning

tasks. Therefore, we would like to use TFPG as the base for the FDI design

of the plant. In this thesis, we presented several techniques to perform

reasoning on top of transition systems. In order to apply the techniques for

diagnosis, diagnosability, and diagnoser synthesis on the TFPGs, we need

to reduce them to transition systems. This transformation is used within

the FAME project (Chapter 10), to perform synthesis from TFPGs.

9.2.1 TFPG as a Transition System

In order to capture the TFPG as a discrete-time transition system, we dis-

cretize its timed behavior2. The timed behavior of the TFPG is discretized

by defining an atomic unit of time, and allowing all behaviors to occur only

with timings that are multiple of the basic unit. The unit of time is called

sampling time (δ). By breaking down possible evolutions of the TFPG

according to the sampling time, we obtain a discretized TFPG (dTFPG).

The dTFPG is a transition system in which each transition takes exactly

one sampling time δ. For example, let us consider a sampling time of 0.5,

2The final (working) version of the encoding has been developed and implemented by Benjamin Bittner.

My contribution focused on the definition of the problem, examples and an initial idea for the encoding.
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and an edge with tmin = tmax = 5. The same edge will be encoded in

the dTFPG as requiring 10 discrete time-steps to propagate.

MODULE edge (tmin, tmax, source, target,

trans_type, time_tick, system_mode_is_compatible)

VAR counter : 0..tmax;

-- Failure has propagated to source node but not to the target node (yet)

-- and the system is in a compatible mode

DEFINE is_active := source.is_active & !target.is_active & system_mode_is_compatible;

-- The edge is active and within the propagation time

DEFINE can_fire := is_active & counter >= tmin & counter < tmax;

-- The edge is active and has reached tmax!

DEFINE must_fire := is_active & counter = tmax;

ASSIGN init(counter) := 0;

ASSIGN next(counter) := case

next(!is_active) : 0; -- Edge is not active (reset)

counter < tmax & time_tick : counter + 1;-- Increment

TRUE : counter; -- Keep as-is

esac;

Figure 9.5: Simplified SMV Module for an Edge.

Each edge of the TFPG is translated into a component containing a

counter (Figure 9.5). The counter keeps track of how long the edge has been

active. Once the counter is within the propagation time, it indicates to the

target discrepancy node that it can activate. The counter is reset during

mode change . Depending on the type of the discrepancy, we define when

it can or must activate, by considering the incoming edges (Figure 9.6).

We distinguish between 3 types of transitions: mode-change, activation,

and timed. A mode-change transition indicates the change of mode and

the corresponding (de-)activation of edges and corresponding counters. An

activation transition indicates that a new discrepancy has been activated.

This makes it easier to handle 0-delay propagations, and activation of new
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edges. Finally, a timed transition (time_tick in the figures) is used to

make time progress; during this transition counters are increased for all

active edges that have not completed the propagation.

MODULE node (can_fire, must_fire, time_tick, instant_trans_type)

VAR is_active: boolean;

ASSIGN init(is_active) := FALSE;

ASSIGN next(is_active) := case

instant_trans_type != NODE_ACTIVATION : is_active;

must_fire : TRUE;

can_fire : {FALSE, TRUE};

TRUE : is_active;

esac;

Figure 9.6: Simplified SMV Module for a Discrepancy.

Failure mode nodes can activate in a non-deterministic way during ac-

tivation transitions. Figure 9.7 presents a snippet of SMV code encoding

a part of the TFPG for the BSS (Figure 9.2). Notice how the semantics of

AND, and OR is encoded in the can_fire, must_fire definition.

The conversion of a TFPG into a dTFPG makes it possible to apply

numerous techniques from the formal verification domain, including di-

agnosability analysis, verification, and synthesis of diagnoser. The main

limitation of this approach is given by the choice of the sampling time. The

size of the resulting dTFPG depends on the sampling time and on the con-

stants involved in the edges. Choosing a sampling time that is too small,

can lead to a dTFPG that requires thousands of discrete steps to perform

a single propagation. On the other hand, a sampling time that is too big,

might affect the accuracy of the dTFPG. In fact, multiple traces of the

TFPG will be collapsed into a single trace of the dTFPG. This can lead to

situations where traces that were diagnosable in the TFPG become non-

diagnosable in the dTFPG. A possible solution to these problems would

be to allow time-steps to consume more than one time unit, or use a richer
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MODULE main

...

VAR or_node_S1_WO : node(-- Can Fire?

(edge_B1_DEAD_to_S1_WO_EDGE4.can_fire|

edge_B2_DEAD_to_S1_WO_EDGE12.can_fire|

edge_Sens1_off_to_S1_WO_EDGE13.can_fire),

-- Must Fire?

(edge_B1_DEAD_to_S1_WO_EDGE4.must_fire|

edge_B2_DEAD_to_S1_WO_EDGE12.must_fire|

edge_Sens1_off_to_S1_WO_EDGE13.must_fire),

-- Other Info

time_tick, instant_trans_type);

VAR and_node_System_Dead : node(-- Can Fire?

((edge1.can_fire | edge1.must_fire) &

(edge2.can_fire | edge2.must_fire) &

(edge1.can_fire | edge2.can_fire)),

-- Must Fire?

(edge1.must_fire &

edge2.must_fire),

-- Other Info

time_tick, instant_trans_type);

...

Figure 9.7: (Partial) SMV encoding of the TFPG of the BSS.

formalism like timed transition systems.

9.2.2 Abstraction of the Plant

Using the TFPG as an abstraction of the plant opens up the question

on the quality of the abstraction. Can we use a diagnoser obtained from

the abstraction, on top of the real plant? How good is the abstraction of

the plant? In particular, the TFPG needs to capture all the interesting

behaviors of the plant. To achieve this, we introduce the general idea of

cross diagnosability.

Cross Diagnosability makes it possible to relate the observable traces

of two systems, and thus leads to diagnoser reuse, i.e., the possibility of
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Figure 9.8: Systems and Diagnosers connections

using a diagnoser that was designed for one system and apply it on another

system. In our case, we design a diagnoser for a dTFPG and use it on the

plant. However, the second system could also be obtained by constructive

abstraction techniques [91]. Figure 9.8 schematizes the idea of diagnoser

reuse. A plant P and a dTFPG G are given, together with two alarm

specification ϕP and ϕG. P and G are not necessarily related, and the two

specifications can be arbitrary. We can thus build the diagnosers D(P, ϕP )

and D(G,ϕG) (Figure 9.8 – Left). Let us assume, for now, that P and G

have the same observable language. Without additional assumptions, we

want to know whether we can replace D(P, ϕP ) with D(G,ϕG) and still

obtain the same diagnosis (Figure 9.8 – Right). More formally, whether

(up-to renaming) D(G,ϕG) is a correct and maximal diagnoser for ϕP in P .

In particular, by considering the ASLK formulation of the alarm condition

ϕP (Section 6.3), we ask whether:

P ×D(G,ϕG) |= ϕ(AP , ϕP )[AP/AG]

Requiring that both system have the same observable language, allows

us to guarantee (by construction) the compatibility of the diagnosers. This

means, that the diagnosers are able to accept in input the same set of

observable traces. Since we are interested in a particular direction (using

a diagnoser of G on P ), we can weaken this requirement and require that

every trace of P can be mapped into a trace of G. For simplicity, we
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now assume that the mapping is an identity function, and thus that the

observable language of the plant is a subset of the observable language of

the TFPG (LO(P ) ⊆ LO(G)). In this way, every trace of the plant has a

corresponding trace in the TFPG.

Diagnoser reuse opens the possibility of applying the following process:

1. Design G and ϕG

2. Synthesize D(G,ϕG)

3. Check/ensure that:

(a) P ×D(G,ϕG) |= ϕ(AP , ϕP )[AP/AG] and

(b) D(G,ϕG) is compatible with P .

Since the diagnoser construction (Step 2) is an expensive step (Chapter 8),

we want to check whether D(G,ϕG) is going to be a diagnoser for P before

constructing it, therefore, we extend the concept of diagnosability across

the two systems.

When testing diagnosability via the twin-plant (Chapter 7) we consider

pairs of traces from the same system. The intuition behind cross diagnos-

ability is to consider pair of traces that come from two different systems

(e.g., the plant and the TFPG). As an example, the definition of bounded

delay diagnosability (Section 5.4) is extended as follows:

Definition 29. (Bounded Delay Cross Diagnosability) Given two plants

P and PG, two diagnosis condition β and βG, a recall R, two sets of ob-

servables EO and EOG
(respectively of P and PG), and a mapping func-

tion γ : EO → EOG
, we say that BoundDel(A, β, d) is cross sys-

tem diagnosable w.r.t PG and the diagnosis condition βG in P iff forall

(σP , i) ∈ P s.t. σP , i |= β there exists k s.t. i ≤ k ≤ i+ d, ObsPoint(σP , k)

and for all (σG, l) ∈ PG, if ObsPoint(σG, l) and obsREOG
(γ(obs(σkP ))) =

obsREOG
(obs(σlG)), then there exists j s.t. l − d ≤ j ≤ l, and σG, j |= βG.
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This definition extends Definition 14, by embedding the mapping γ in the

definition of ObsEq . Intuitively, we want to compare every trace of the

plant in which β occurred, with every trace of PG, that has the same

observations up-to mapping.

To keep the definition simple, we require the alarm specification to be

of the same type on both plants. The above definition can be extended to

the other alarm conditions, and be generalized to trace diagnosability.

To test the system diagnosability, we can extend the coupled twin-plant

approach. Instead of using two copies of the same plant, we use one copy of

the plant and one of the TFPG, and then verify the properties as described

in Chapter 7. In practice, this provides us with an effective approach to

verify whether a dTFPG captures all behaviors of interest of the plant that

it is modeling.

The process is not limited to TFPGs, and it can be applied on a generic

system G. In particular, G can be an abstraction of P , obtained via tech-

niques such as predicate abstraction [109]. The concept of cross diag-

nosability generalizes the approach described in [91], in which sufficient

conditions are given for abstractions techniques that guarantee cross diag-

nosability (called abstract diagnosability).

9.3 Chapter Summary

We presented a novel characterization of TFPGs based on symbolic tech-

niques. We explored several important reasoning tasks that aim at increas-

ing the confidence of the designer in the TFPG model, thus guaranteeing

that the online reasoning tasks (e.g., diagnosis) can be effective.

Our framework provides a way to describe and perform model vali-

dation, refinement testing, diagnosis and diagnosability in a unified way.

Other reasoning tasks can be defined in the future by relying on the SMT
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solvers to perform the reasoning, without implementing ad-hoc reasoning

algorithms. Finally, we experimentally show that these techniques are ap-

plicable on TFPGs of considerable size.

We describe an approach to convert a TFPG into a transition system

(dTFPG), and then clarify the relation between the TFPG and the plant.

In order to exploit the dTFPG and certify its effectiveness, we propose the

concept of diagnoser reuse and cross diagnosability.

An interesting open point concerns the possibility of automatically gen-

erating a TFPG from a given system model, and [27] represents a first

attempt in this direction.
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Chapter 10

Industrial Experience

This thesis has been motivated by the industrial need to improve the design

process of FDIR systems. The FDIR design is currently post-poned until

late phases of the system design. This leads to designs that are sub-optimal,

and mostly based on past successful strategies. Validation of such solutions

is a difficult task and is currently mostly performed manually. Moreover,

late changes to the plant design might have drastic impact on the FDIR

strategy. Similarly, in order to achieve the FDIR objectives, it might be

necessary to modify the system design. The impact of these changes might

be profound, and potentially delay launch.

The European Space Agency (ESA) started several projects to try and

improve the FDIR development and verification process. The goal is to

increase the confidence on the FDIR design, simplify its certification, and

shorten the design loop. In this Chapter, we report on two projects in

which we were involved: AUTOGEF and FAME.

We first provide some context to these projects, giving an overview

of the COMPASS project, and highlighting the starting point for both

AUTOGEF and FAME (Section 10.1). Section 10.2 discusses a general

process for the use of formal techniques in the development of FDIR. In

Section 10.3, we show how this process has been applied, by our industrial
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partners, on a case-study based on ExoMars in both AUTOGEF and

FAME, and discuss the technical differences in both projects.

The contribution of this Chapter is to present the AUTOGEF and

FAME projects. These projects served as starting point for most of the

work in this thesis. Additionally, we discuss the challenges involved in

FDIR design, and describe a possible process to introduce formal tech-

niques in the design flow. This Chapter extends the material presented

in [25].

10.1 COMPASS

The design of critical systems in aerospace is a complex and highly chal-

lenging task, as it requires assembling heterogeneous components, imple-

mented either in hardware or in software, and taking into account their

interactions.

The ESA project COMPASS tried to address some of these problems

by introducing a tool-set [35, 61] to apply formal verification to system-

software co-engineering. The tool-set supports model-based development

and verification of aerospace systems. It takes in input a formal model

of the system, and can perform several types of analysis: requirements

analysis, functional verification, safety assessment, performability evalua-

tion, and diagnosability. The modeling language is called System-Level

Integrated Modeling (SLIM) language [39] and it is based on the Archi-

tecture Analysis and Design Language (AADL) [80] and its Error Model

Annex [81]. AADL has become a standard in the industry for the descrip-

tion of systems. The fact that SLIM is derived from AADL should simplify

the adoption of the technologies provided by COMPASS within the in-

dustry. The SLIM language can be used to model discrete, timed, hybrid

and probabilistic behaviors. The architectural language makes it possible
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to break down complex system into a hierarchy of components, that can

be independently modeled and validated.

The main focus of COMPASS was on the design of the plant. Support

for FDIR design was mostly limited to techniques for verification (e.g.,

model-checking) of FDIR components. In order to properly design FDIR

components, we need to be able to formally specify the requirements and

expectations that we have on the FDIR. Unfortunately, there is no defined

FDIR development process for aerospace that coherently addresses the full

FDIR life-cycle, including the corresponding verification and validation

perspective. An effective FDIR development strategy needs to start in the

early system development phases, and take into account the design and

RAMS (Reliability, Availability, Maintainability, Safety) data from both

software and system perspective. However, the results of Software and

Hardware RAMS activities (e.g., FTA and FMEA), become available late

in the process, leading to late initiation of the FDIR development, which

has a detrimental effect on the FDIR maturity. Finally, there is a conflict

between the bottom-up and top-down approaches: FMEA (bottom-up)

can not be completed until system design has sufficient levels of details,

whereas FTA (top-down) does not guarantee that every possible compo-

nent failure mode which contributes to system failure has been considered.

The AUTOGEF and FAME projects were launched in order to try to

fill this gap in the process and technologies. The AUTOGEF [7] project

was a collaboration between ESA, GMV, Thales France and FBK. The

project aimed to demonstrate that synthesis approaches can allow for ef-

fective automated FDIR development in accordance with the dependability

requirements. The main focus was on the model-based automated FDIR

model generation. The FAME [79] project was a collaboration between

ESA, Thales Italy, Thales France and FBK. The goal was to take the in-

formal flow introduced in AUTOGEF, consolidate it and cast it within
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industrial practices and standards. At the same time, the modeling for-

malism went from discrete events to timed behavior, thus highlighting the

importance of propagation times when considering faults, and the need for

representation formalism such as TFPGs.

Both projects provide an extended version of the COMPASS tool-set,

enabling the application of the techniques discussed here on top of existing

SLIM models. Overall, the three projects (COMPASS, AUTOGEF and

FAME) span across more than 5 years of research.

10.2 FDIR Development Process

The design of the FDIR depends on the availability of detailed information

on the system: which faults should be considered, how they can impact

and propagate to other components, and which options are available for

recovery. For this reason the FDIR design is usually postponed until the

system design has been frozen, thus leaving little time to perform FDIR

design and validation. To address these shortcomings, we propose a novel

process for FDIR design. This process aims at enabling a consistent and

timely FDIR conception, development, verification and validation. It en-

ables the specification and analysis of failure propagation using fault prop-

agation models, the possibility to specify a set of relevant requirements for

FDIR, and to model, or synthesize, FDIR components that comply with

the requirements. Finally, it enables verification of the effectiveness of the

FDIR.

Integrating a formal modeling tool (such as COMPASS) with an auto-

mated way to synthesize the FDIR can improve the FDIR design process.

Automated synthesis techniques generate solutions that are correct by con-

struction. Therefore, it becomes possible to perform what-if analysis by

studying the effect of different FDIR requirements on the overall design.
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Moreover, the synthesized FDIR can be used as placeholder, until a more

detailed design is available.

The process is composed of the following phases:

Analyze User Requirements The requirements at the system level are

captured by developing a formal model and associated properties.

Moreover, relevant mission phases and operational modes are iden-

tified.

Perform Timed Failure Propagation Analysis Timed impact of

faults is studied. A Timed Failure Propagation Model (e.g., a TFPG)

is developed using fault trees and FMEA tables, and the associated

system model.

Define FDIR Objectives and Strategies The specification of the

FDIR is defined by choosing which conditions to monitor, how to

react, severities, etc.

Design FDIR The FDIR is designed in order to satisfy the FDIR require-

ments.

Table 10.1 shows the steps of the process, and how they can be mapped

to the tool support provided by COMPASS and extensions.

Formal design of FDIR can be carried out in parallel (and not as an

alternative) to the classical process. This makes it possible to introduce

the process within existing industrial processes. FAME and AUTOGEF

provide an implementation defined on top of COMPASS, thus inherit-

ing the modeling language SLIM. However, we believe that the process is

abstract enough as to be implemented on top of other technologies.
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Table 10.1: Process break-down

Phase Steps COMPASS

Analyze User Require-

ments

System Modeling & Fault Extension Formal system modeling – nominal and

faulty behavior (in SLIM); automatic

model extension

Formal Analyses Derive requirements on FDIR design

Mission Modeling Definition of mission, phases, and

spacecraft configurations

Perform Timed Fail-

ure Propagation Anal-

ysis

Formal Analyses Derive information on causality and

fault propagation (input for TFPG

modeling)

TFPG Modeling/Synthesis TFPG modeling, editing, synthesis

TFPG Analyses TFPG behavioral validation, TFPG ef-

fectiveness validation

Define FDIR Objec-

tives and Strategies

FDIR Requirements Specification Modeling of FDIR objectives and

strategies, definition of pre-existing

components to be re-used, and FDIR

hierarchy

Design the FDIR FDIR Modeling/Synthesis Formal modeling and automatic syn-

thesis of FDIR

Formal Analyses FDIR effectiveness verification

10.2.1 Analyze User Requirements

The formal model of the system is developed using the SLIM language.

SLIM is an architectural language, that can capture a wide range of dy-

namics: discrete, continuous, hybrid, and probabilistic.

The nominal model can be extended in order to introduce faults, using

error models and fault injection. During this process, the user only needs

to specify the nominal model behavior, the error model of a component,

and select which components can be affected by the fault. The tool takes

care of automatically extending the model introducing the faults. The user

specifies the observability of the system, i.e., which event and data ports

can be observed and used by the diagnoser. For recovery, instead, sets of
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events that can be used to guide the system are marked as recovery actions.

These events will be used by the recovery synthesis algorithms to try to

identify a recovery plan.

The AUTOGEF project focuses on models that are finite and discrete-

time. Both events and (finite) data can be used as observables, and the

diagnoser is assumed to have perfect recall. The synthesis techniques de-

scribed in this thesis were motivated by AUTOGEF, and thus perfectly

fit within this setting. The FAME project, instead, uses models that are

continuous-time.

By developing the model within the COMPASS tool-set, it is possible

to validate the model before proceeding with the FDIR specification and

design. The system designer can apply model-checking techniques to val-

idate the system behavior, and perform RAMS (Reliability, Availability,

Maintainability, Safety) analysis, thus validating the model of the system.

By using Fault Trees and FMEA tables, the system designer can identify

critical faults, that need to be handled by the FDIR.

The FDIR needs to behave differently in different moments of the mis-

sion. Depending on the situation, faults severity might change, and some

recovery actions might not be allowed. This calls for an FDIR specification

that is aware of the current mission phase and operational mode. In order

to capture this information, we ask the system designer to define a Mission

Specification. The mission specification contains the description of the rel-

evant mission phases and the associated operational modes. Moreover, it

associates possible operational modes to one or more mission phases. In or-

der for the FDIR to use this information, it needs to be able to understand

(at run-time) what the current phase and mode is. The system designer

needs to specify some observable condition (i.e., a condition expressed over

observable variables only) that identifies the current phase and mode.

Finally, we require that the user also defines the spacecraft configura-
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tions. Each spacecraft configuration can be associated with one or more

operational modes. The diagnosis and recovery engines will assume that,

whenever the system is in the given phase and mode, the spacecraft is

within one of the given configurations.

10.2.2 Perform Timed Failure Propagation Analysis

Starting from safety artifacts such as fault trees and FMEA tables, the

designer is able to study how a fault can impact the system. Using model-

checking techniques, it is possible to verify the minimum and maximum

time required by a failure to propagate within the system. This information

can be captured into a TFPG (Chapter 9). TFPGs model how failures

propagate, affecting various monitored and unmonitored properties, and

are thus an abstract view of the underlying system.

In FAME, we support the loading, syntactic verification, displaying,

and editing of TFPGs. Nodes are defined using basic expressions over sys-

tem variables. This makes it possible to map executions of the system to

traces of the TFPG. FAME allows checking whether the system exhibits

failure propagations that are not captured by the TFPG (behavioral val-

idation). If wrong values are present, a counter-example is produced to

guide the user in the refinement process. If no counter-example is found,

the analysis guarantees that the timing values are correctly specified. The

tool also allows checking the TFPG adequacy as a model for diagnosis,

using diagnosability analysis (called (diagnosability) effectiveness valida-

tion). This analysis enables the identification of the failure modes that

are not diagnosable. Finally, a technique for automatic generation of the

structure of the TFPG is available. This technique exploits the fault tree

computation engine to extract discrepancies relations, starting from the

system model and discrepancies definition.

On the other hand, in AUTOGEF, we are not concerned with the
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timed behavior of the faults, and therefore this phase is not considered.

10.2.3 Define FDIR Objectives and Strategies

The definition of the FDIR Specification is driven by the mission phases

and modes, the spacecraft configurations, and the faults. The FDIR Spec-

ification is divided into two main areas: Fault Detection (FD) and Fault

Recovery (FR).

In the FD specification, it is possible to consider a subset of all the faults

that can occur in the system. Not selecting a fault might be justified by

the limited impact of the fault on the system, or simply by the desire of

starting with a simpler design in order to perform multiple iterations and

gradually increase the number of faults considered. Each selected fault

is associated with an alarm. The definition of the alarm can be either

delegated to the synthesis engine, or mapped to an existing alarm of the

system model.

The choice of which faults to consider should be driven by the results

of the RAMS analysis, and the potential impact of each faults towards

the mission objectives. The diagnosis conditions are assigned to the target

faults. Using the results of the failure propagation analysis, it becomes

possible to decide the acceptable delay for each alarm condition.

The FR specification is composed of a table associating each triple of

Alarm, Phase and Mode to a recovery goal. This provides several indepen-

dent recovery problems. Each of these problems can be enriched by adding

information concerning the severity of the alarm (within the given phase

and mode), the constraints on the target spacecraft configuration to reach,

and limits to the set of actions that can be used.

Similarly as done for the FD, the definition of the recovery procedure

can be delegated to the synthesis engine, or it can be given by identifying

an existing component (within the system model) that can carry out the
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recovery.

Several information need to be provided within the FDIR specification.

Patterns are used to simplify the process. Patterns can be used to pre-

fill the FD and FR table. For example, default recovery actions can be

associated with a given alarm.

10.2.4 Design the FDIR

The FDIR can be designed starting from the FDIR Specification. The

FDIR needs to cover all the specified requirements for each mission

phase/operational mode. Moreover, existing components that were in-

cluded in the FDIR Specification for some phase/mode, need to be com-

bined with the final FDIR design.

Once the design is completed, it can be verified by applying model

checking techniques. In particular, we can verify that faults are detected

correctly and recoveries lead the system to the desired state.

In both AUTOGEF and FAME, both the FD and FR components are

automatically synthesized, starting from the available information. The

mission specification and the link between alarms and recoveries are cap-

tured by creating the FDIRConf component (Figure 4.4). Having this

intermediate component simplifies the integration of generated and prede-

fined FDIR components.

Since AUTOGEF assumes a discrete-time system, while FAME as-

sumes a continuous-time one, we approach the synthesis in two different

ways. Nevertheless, the outcome is an FDIR that satisfies the FDIR re-

quirements by construction. The synthesis engines have been developed

within the xSAP tool [158].

AUTOGEF and Discrete-Time FDIR The FD synthesis follows the belief

explorer construction explained in Chapter 8 for asynchronous systems.
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For each alarm in the FD specification, we create a FiniteDel alarm spec-

ification, and require a trace diagnosable and maximal alarm. Therefore,

the output of the synthesis process is a three valued alarm (Section 8.1),

indicating that i) the fault did occur, ii) the fault did not occur iii) it is

impossible (with the given observations) to know whether the fault did or

did not occur.

The FR synthesis uses techniques coming from planning under partial

observability [19]. The outcome of the synthesis is an automaton that,

when activated, executes a plan with branching points. In those branching

points, the FR uses observations coming from the system to decide how

to proceed. If a plan is found by the synthesis process, it is guaranteed to

always be able the take the system to the target mode and configuration.

FAME and Continuous-Time FDIR To deal with the continuous-time na-

ture of the system models used in FAME, we use an abstraction technique.

For the synthesis of the FD, we use the TFPG as an abstract view of the

system. This means that we abstract the FDIR requirements, in order

to only talk about failure mode appearing in the TFPG, and observable

discrepancies. By providing a sampling rate to the engine, we are able

to discretize the TFPG and obtain a discrete-time model (as described in

Chapter 9.2). The dTFPG is a finite state system, therefore we can apply

the synthesis algorithm and obtain a discrete-time diagnoser. The discrete-

time diagnoser is then converted into a timed automata, that is controlled

by the chosen sampling rate. Additionally, we introduce a component that

is tasked with translating traces from the system into traces of the TFPG

(Sys2TFPG in Figure 10.1).

The FR component is built by using techniques of conformant plan-

ning [144]. The reasoning is performed on an abstract version of the sys-

tem [109], obtained by using predicate abstraction techniques. A recovery
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Figure 10.1: FAME FDIR Architecture

plan consists of a sequence of actions that are guaranteed to bring the sys-

tem to the target condition. A conformant plan does not have branching

points. However, since we are working on timed systems, the recovery plan

can include operations for waiting for a certain amount of time. After syn-

thesis, the FD and FR components are connected as shown in Figure 10.1.

10.3 Case Study: ExoMars

The evaluation for both AUTOGEF and FAME was performed by Thales

Alenia Space on a sub-set of the Trace Gas Orbiter (TGO) of the ExoMars

project [62]. The ESA ExoMars system will be launched in 2016 and will

arrive to Mars approximately 9 months later. The system is composed of

a spacecraft that will carry an Entry and Descent Module (EDM) demon-
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strator. During the transit from Earth to Mars, the TGO will carry and

provide power and other services to the EDM. The release of the EDM

will take place prior to the critical Mars Orbit Insertion (MOI) maneuver

by the TGO. After capture by Mars gravitation field, the TGO will orbit

around Mars and provide support to the EDM. Once the EDM surface

operations are completed, the TGO will start a science data acquisition

phase. Near the end of this phase, the 2018 mission should arrive to Mars,

relying on the TGO for support.

The case study was chosen since it provides an opportunity for evaluat-

ing all the aspects of the approach. In particular, it presents a complexity

level that is representative of the classical complexity level in this domain.

The ExoMars mission can be divided into several mission phases, but

in our case study we only consider the Mars Orbit Insertion (MOI). In this

phase, several operational modes are used: nominal, safe, and degraded.

Degraded modes are used by the FDIR when reconfiguration is required.

The main functional chain considered during the case study is the Guid-

ance, Navigation and Control (GNC) function which encompasses sensors,

control software, and actuators. The goal of this sub-system is to maintain

the correct spacecraft attitude. The faults that were considered are those

related to the units that can lead to the main feared event considered in

this study: the loss of spacecraft attitude.

The system architectural and behavioral information, and information

concerning the mission phases and operational modes, were used as inputs

to model the nominal system.

Feared Event Analysis and FMECA The first activity for safety analysis is

the Feared Event Analysis. We are interested in the feared events coming

from the units realizing the acquisition of the spacecraft attitude: the Iner-

tial Management Units (IMU). Three possible failure modes are considered:
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Item Sensor Fault Local Effect System Effect

IMU 001 Signal is too low Continuous self-reset of IMU No measure is sent

IMU 002 Output is biased None Biased output from sensor channel

IMU 003 Output is wrong Loss of RLG dither control Wrong output from sensor channel

Figure 10.2: FMECA Table

No measure, Biased measure and Wrong measures. The only failure mode

that is not diagnosable is biased measure, while absence of measure and

wrong measures are detectable either by rate control, or by cross-checking

with other readings. Using documentation and FMECA from the IMU

equipment supplier, the IMU FMECA Items are analyzed and those hav-

ing impact on the system are selected. Figure 10.2 gives a selection of three

FMECA items of the IMU equipment. The local and system effects can

be matched with the failure modes identified in the previous feared event

analysis.

Failure Propagation Modeling To simplify the analysis, subsets of system

failures have been considered, e.g., in cold redundancy the failures of nom-

inal equipment are analyzed independently of the failures of the redundant

equipment. Let us consider the IMU equipment. In any mission phase

where this unit is used, the failures propagate into the system, since no

FDIR prevents the propagation (yet), and has an impact on the spacecraft

attitude, leading to the feared event that we are interested in: loss of the

spacecraft attitude. This fault propagation is modeled in the SLIM model

by implementing for each function the effect on its outputs given wrong

input values. Since fault propagation may not be immediate, it is impor-

tant to consider timing information. Function implementations therefore

introduce delays in this propagation.
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Specification of FDIR A set of requirements coming from the ExoMars

TGO project were analyzed to produce FDIR objectives, strategies, and

specifications. The complete FDIR specification for the case study in

FAME defines one alarm for each of the selected faults (Figure 10.2) and for

each of the IMUs, thus providing a total of 6 alarms in the specification.

Each alarm is associated with a recovery requirement for each possible

phase and mode combination. In total, this results in 24 recovery require-

ments, 12 for each IMU unit: the nominal (IMU1) and the redundant one

(IMU2). In AUTOGEF, a few additional components were considered,

leading to 10 alarm and 27 recovery requirements.

Timed Fault Propagation Graph Modeling Instead of building a global

TFPG that would cover all failures of the system for all modes, we build

several TFPGs, covering the failures of respectively the nominal and the

redundant IMU. The TFPG model for the nominal IMU is defined starting

from the SLIM model enhanced with timing aspects and the error model

(Figure 10.3). On this TFPG we can see the three failure modes of the nom-

inal IMU equipment propagating in the system. Some of the discrepancies

are observable, whereas some are not. Associations between discrepancies

modes and system model define the relation between nodes in the TFPG

and the original system. The TFPG was validated using behavioral and

effectiveness validation analysis provided by the tool, thus verifying that

the TFPG properly capture diagnosability of the system.

FDIR Synthesis The FD synthesis resulted an FD SLIM module that en-

codes a finite state machine with 2413 states. The FR synthesis resulted in

an FR SLIM module with recoveries (6 recoveries out of 9 are found). The

missing recoveries identify situations in which there is no strategy that can

guarantee the recovery. Although it might be possible to find strategies
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Figure 10.3: Case study TFPG (Nominal IMU)

that would work under certain circumstances, the tool focuses on finding

solutions that always work.

In AUTOGEF, the scope of the modeling was slightly broader and

included also other components of the system (namely the On-Board Con-

troller, and the Thrusters). All 10 alarms for the FD were correctly syn-

thesized, leading to a diagnoser with more than 700 states. The synthesis

of the Fault Recovery module managed to identify 18 (out of 27) plans.

The FAME FD has more states than the one from AUTOGEF. The rea-

son is the size of the underlying dTFPG model. Although, the TFPG is

an abstraction of the plant, when discretizing it to obtain the dTFPG, we

end up with a system with many states. In turn, this leads to a bigger

diagnoser. This does not go against the idea of performing the abstraction

in the first place. In fact, without abstraction, we currently would not be

able synthesize any diagnoser.

In both cases, the resulting FDIR and extended system model, were fur-

ther analyzed using model-checking techniques provided by the COMPASS
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tool-set, and the effectiveness of the solution was verified.

10.4 Chapter Summary

In this Chapter we presented two ESA-funded projects that strongly influ-

enced this thesis. The framework for specification of FDIR requirements

is at the base of ASLK (Chapter 6), AUTOGEF fostered the need for the

FDI synthesis techniques (Chapter 8) and FAME pushed us to develop

validation techniques for TFPGs (Chapter 9). Moreover, these projects

motivated the FDIR design process presented in this Chapter. We also

discussed the application of these techniques on a case-study. The process

and tooling have been successfully evaluated by the industrial partners

within the ESA projects AUTOGEF and FAME. The tools supporting

those projects, although research tools, received positive feedback from

the industrial partners. In particular, they helped to formally define and

analyze different options for system and FDIR design.

There are several interesting technical directions for future work. The

TFPG modeling process is still mostly manual, and should be supported by

TFPG synthesis algorithm. An initial approach to compute the structure

of the TFPG was integrated in FAME. This provides some support to the

designer, but more work (e.g., [27]) is needed to avoid relying on manual

inputs. From the point of view of the process, it would be important to

trace requirements through the different phases of the formal development.

Friendliness towards traceability of the requirements might be an important

obstacle to overcome before these tools are applied in industry. In the

same direction, it would be interesting to integrate the COMPASS tool-set

with other modeling tools used in industry (e.g., Melody Advance, used in

Thales). Since modeling is a time- and cost-consuming activity deriving the

SLIM model from other formalism could be a first step to wider adoption
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of these techniques.
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Chapter 11

Temporal Epistemic Logic

Model-Checking

Temporal Epistemic Logic (TEL) is a modal logic combining operators

for the evolution of time, and the representation of knowledge. In this

thesis, we focused on the application of TEL to the diagnosis domain.

Nevertheless, other interesting applications of TEL exist, for example in

the domain of information security [9], or cryptographic protocols [30],

where we are interested in guaranteeing that some information will remain

private, even if some public information is shared.

There are multiple variants of TEL, depending on the type of temporal

and epistemic logic being considered. From the temporal side, we distin-

guish between linear-time and branching-time. The epistemic operator,

instead can be characterized by several types of recall. In this thesis we

focus on LTL, and consider multiple types of recall, thus obtaining the

KL logic [93]. In particular, we focus on the fragment KL1 of the logic,

in which we do not allow nesting of the epistemic operator. This logic is

widely used in the literature [78, 154, 108, 14, 107, 14].

Concerning the properties of the models being studies, existing tools

deal with finite state systems. To properly capture the target domains of

physical systems, we need to be able to use infinite state models. There is

197



CHAPTER 11. TEMPORAL EPISTEMIC LOGIC MODEL-CHECKING

currently a lack of tools for temporal epistemic model-checking in infinite

state systems, and works in this area are mostly limited to theoretical ones.

At the same time, infinite state model-checking for transition systems has

become a consolidated area of research in the formal verification commu-

nity [67, 16, 47], where efficient SAT/SMT [12] based algorithms have been

developed. Although, in the general case, this is an undecidable problem,

these algorithms (e.g., IC3 [51]) are able, in practice, to deal with infinite

state models. Moreover, when these techniques are applied to finite state

models, they usually can handle larger models than the algorithms based

on Binary Decision Diagrams (BDDs [46]).

Our goal is to exploit existing verification algorithms (e.g., IC3) to

model-check KL1 over finite/infinite state synchronous transition systems

under observational semantics. To achieve this, we propose two approaches

that work by reducing KL1 to LTL. First, we consider an eager approach,

that works by performing an up-front computation of the states that sat-

isfy the epistemic subformula. This approach relies on parameter synthesis

techniques, and works, in practice, for finite and infinite state systems. In-

terestingly, this approach is sensitive to the number of observable variables.

Therefore, if the model consists of few observable variables, we manage to

obtain reasonable performances. Unfortunately, the approach does not

scale on models with a significant number of observables. Our second so-

lution is characterized by a lazy approach. The computation of the states

satisfying the epistemic subformulae is not carried out up-front. Rather,

we rely on a counter-example guided abstraction refinement (CEGAR) of

the property. Similarly to the lazy approach in Satisfiability Modulo The-

ories, the epistemic atoms are initially treated as Boolean variables, and

incrementally axiomatized as a result of proving the spuriousness of the

counterexamples.

In Section 11.1 we introduce the fragment InvKL1, and provide exam-
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ples of its usage in the literature. The Eager approach is presented in

Section 11.2.

Section 11.3, introduces the Lazy approach, several optimizations, and

the generalization to KLn. Section 11.4 provides a detailed experimental

analysis.

The contributions of this Chapter are:

1. Identify the fragments KL1 and InvKL1, and show their relevance in

the literature and in practice;

2. Propose and implement the first practical approaches (Lazy and Ea-

ger) for model-checking KL1 on infinite-state transition systems;

3. Introduce several optimization for the Lazy approach, that are funda-

mental to achieve competitive performances;

4. Provide a detail comparison of both approaches; additionally, we com-

pare the approaches against existing tools for finite-state KL1 model-

checking.

The material of this chapter is based on [49]. With respect to [49], we show

how to extend the Lazy approach to KLn, and we substantially extended

the explanation of the Eager approach and its experimental evaluation.

11.1 KL1 and InvKL1

KL1 is the restriction of KL (see Section 2.4) in which there is no nesting

of the epistemic operator. Epistemic invariants of KL1 (InvKL1) are the

formulas that fall into the following syntactic fragment (φ):

φ := Gψ , ψ := p | ψ ∧ ψ | ¬ψ | KAγ

γ := p | γ ∧ γ | ¬γ | Xγ | Y γ | γUγ | γSγ
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Notice that, apart from the top-level G, all other temporal operators can

occur only within the K (i.e., γ). All ASLK specifications (Chapter 6 –

Table 6.7) can be expressed in KL1. In particular, Maximality falls into

the InvKL1 fragment. InvKL1 and LTL are sufficient to verify correctness

and maximality properties of ASLK specifications; only diagnosability (and

thus trace completeness) requires full KL1.

Outside of the FDI design domain, InvKL1 (and thus KL1) is a widely

used fragment, despite its simplicity. The following are just a few examples

of properties in the literature that are in InvKL1:

• Muddy Children [78]:

G(((Kimuddyi) ∨ (Ki¬muddyi))→ saysi)

• Dining Cryptographers [154]:

G
(
[(K1¬paid1) ∧ (K1¬paid2) ∧ (K1¬paid3)]∨

[K1(paid1 ∨ paid2 ∨ paid3) ∧ ¬(K1paid2) ∧ ¬(K1paid3)]
)

• Card Games [108]: G(allred→ KPlayer1F (win1))

and more examples include the Faulty Train Gate Controller [14], the Gos-

sip Protocol [14], and goals in planning problems [107].

In the context of diagnosis, we did not find situations in which nesting of

epistemic operators are needed. In this thesis, we considered a centralized,

monolithic FDI. The approach can be extended to encompass a distributed

FDI by considering multiple agents and their distributed knowledge. A

proper formalization of distributed FDI is left as future work, however, we

would like to point out that our reasoning engine can handle the distributed

knowledge operator DG. DG defines the collective knowledge of a group G

of agents. Assuming that all agents in G have the same recall, distributed

knowledge can be captured by introducing a new agent that has access to

all the observations of the group G, thus fitting within the KL1 fragment.
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Voters Example

The type of systems that we consider have a finite number of variables

which, however, can have infinite domains. For example, we can have

integer or rational values, and use the theory of arithmetic [73] to define

the transition relation, as demonstrated by the following voters example.

A group of people are called to express a vote. The vote is represented

by an unbounded integer value greater or equal than 0. The vote is secret,

but the jury can access the sum of all votes (observable). This simple

model can be capture by the following transition system:

V ars : {guess ∈ N, votei ∈ N, result ∈ N, voted ∈ B}

Init : ¬voted

Trans : (result′ = vote0 + · · ·+ voten) ∧

voted′ ∧ guess′ = guess ∧ vote′i = votei

Can the jury know what somebody voted? We formalize this by checking

whether the jury can know what the first voter voted, i.e.,

M |= G(voted→ ¬K{jury}vote1 = guess)

where guess is an integer variable and jury = {result, guess}. Intuitively,

for every possible guess, it is not possible for the jury to know that the first

voter’s vote matches the guess. The counter-example to this specification

is a corner case: if everybody votes 0, the jury knows what everybody

voted. To prove the property, we need to show that for any value of guess,

vote1 and result the property holds. Since those variables have an infinite

domain, we cannot simply enumerate all solutions, but need to reason

symbolically on the set of states.
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11.2 Eager Approach

Thanks to the observational semantics, the satisfaction of the formula KAϕ

in (σ, n) depends only on the state σ[n]. In particular, if (P, σ, n) |= KAϕ,

then (P, σ′,m) |= KAϕ for every trace σ′ of P such that obsA(σ[n]) =

obsA(σ′[m]). We define the denotation of KAϕ in P (written JKAϕKP ):

JKAϕKP = {s ∈ Reach | ∀σ, ∀n. obsA(σ[n]) = obsA(s)⇒ (P, σ, n) |= KAϕ}

For every σ, for every n ≥ 0, (P, σ, n) |= KAϕ iff σ[n] ∈ JKAϕKP . This

key observation, allows us to define the satisfaction of epistemic atoms of

KL1 on states, instead that on traces (as done in the semantics definition).

A simple way of solving the model-checking problem for KL1, consists in

computing the denotation of the epistemic atoms up-front, and replace the

epistemic atoms with their denotation, thus obtaining a pure LTL formula

that is equivalent w.r.t. a target partially observable transition system.

This allows us to use any existing LTL model-checking algorithm for finite

or infinite state systems, such as bounded model checking (BMC) [22] us-

ing Boolean Satisfiability (SAT) and Satisfiability Modulo Theories (SMT)

solvers, or more recent techniques such as IC3 [42].

Recall that a partially observable transition system (POTS) is a transi-

tion system, in which we identify some state variables as observables (i.e.,

VO ⊆ V ), and write P = 〈V, VO, I, T 〉. Let ϕ be a KL1 formula containing

Kϕ as a subformula. We use JKϕK to indicate both the denotation of Kϕ

and its symbolic characterization expressed over the state variables X of

the POTS P .

Lemma 3. For a POTS P and a KL1 formula ψ, P |= ψ iff P |=
ψ[Kϕ/ JKϕK].

Proof. By definition of denotation, we have that it contains all reachable

states that satisfy Kϕ. Moreover, we know that σ[n] ∈ JKϕK iff (σ, n) |=

202



11.2. EAGER APPROACH

Kϕ. Due to the recursive definition of LTL semantics, we can replace the

subformula with the symbolic characterization of the states that satisfy

it.

Using the above lemma, we can replace every epistemic subformula in ψ

with its denotation, thus obtaining a pure LTL formula. In general, we

are able to take a formula in KLn and reduce it to a formula in KLn−1, by

removing one level of nesting. By applying this technique recursively we

can reason on any KL formula.

Computing the denotation up-front is what we call eager approach. In

general, this idea of delegating the handling of the epistemic atoms to an

external oracle is not new, and it has been used in [152] (with the name

local proposition), and in [153, 74] to deal with perfect recall. Existing

approaches for KL1 model-checking under observational semantics, rely on

the availability of the denotation of the epistemic subformulae. In order to

obtain the denotation, techniques based on BDDs first compute the reach-

able states and than partition the set of states based on their observability.

The starting points of those procedures is the computation of the reach-

able states. This computation is possible in the finite state case, and

therefore this general algorithm is commonly implemented in tools for fi-

nite state temporal epistemic logic model-checking (both LTL and CTL)

such as MCK [88] and MCMAS [116]. Unfortunately, in the context of

infinite state systems, reachability is in general undecidable. Additionally,

operations requiring quantifier elimination (such as backward images) on

infinite state systems, range from expensive to undecidable.

11.2.1 Approximating the Denotation

Lemma 3 requires the computation of JKϕK, and therefore the computation

of the reachable states. This requirement can be relaxed by introducing
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an approximation of the denotation called good approximation, that differs

from the denotation only on non-reachable states.

Definition 30 (Good Approximation). Let P be a POTS and Kϕ a KL1

formula. We call a set of states JKϕK∗ a good approximation of the deno-

tation of Kϕ iff JKϕK = JKϕK∗ ∩ReachP .

Since the denotation is a subset of the reachables, it follows that JKϕK ⊆
JKϕK∗. In practice, we over-approximate the denotation by including states

that are not reachable. The intuition is that we will let the LTL model-

checking algorithm decide, at search-time, whether a given state in the

approximation is reachable or not, and thus whether it belongs to the

denotation.

Theorem 16. Given a POTS P , and a KL1 formula ψ s.t. Kϕ is a sub-

formula of ψ, we have that: P |= ψ iff P |= ψ[Kϕ/ JKϕK∗].

Proof. Lemma 3 shows that we can replace the epistemic subformula with

its denotation. We now need to show that we can replace the denotation

with a good approximation.

Let us consider a trace σ of P and a point n, s.t. (σ, n) |= Kϕ but

(σ, n) 6|= JKϕK∗. This means that σ[n] 6∈ JKϕK∗, i.e., the state is not

included in the good approximation. However, by definition of good ap-

proximation, we know that JKϕK∗ ⊇ JKϕK thus we reach a contradiction.

Let us consider the other direction, in which we have have a path σ of P

and a point i s.t. (σ, n) 6|= Kϕ but (σ, n) |= JKϕK∗. By definition of good

approximation, this means that σ[n] must be non-reachable, thus reaching

a contradiction.

This result tells us that we can focus on an approximation. The ap-

proximation can be symbolically represented as an expression on the state

variables of the system. However, we notice that due to the observational
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semantics of K, whether a state s belongs to JKϕK depends only on the ob-

servation associate to the state (obs(s)) rather than the state itself. There-

fore, we would like to represent the denotation using only the observable

variables, thus obtaining a more compact representation of the denotation,

and much better practical performances (as we will show Section 11.4).

Definition 31 (Observable Denotation). Given a denotation JKϕK, we

call obs(JKϕK) the observable denotation defined as:

obs(JKϕK) = {obs(s) | s ∈ JKϕK}

The observable denotation corresponds to an (over-approximating) ab-

straction of the set of states in JKϕK, where we might have observations

that belong to states that are both reachable and non-reachable. For exam-

ple, consider two states s1 and s2, s.t. obs(s1) = obs(s2) and s1 is reachable

but s2 is not. Since s1 is reachable, obs(s1) will be in the observable deno-

tation, thus representing both states. This is in-line with the definition of

good approximation and we can build a good approximation starting from

the observable denotation. Recalling that Σ(X) is the set of all possible

assignments to the state variables X, we define the following lemma.

Lemma 4. Let P be a POTS and Kϕ be a KL1 formula, then the observable

denotation obs(JKϕK) is a good approximation of the denotation of Kϕ.

Formally:

JKϕK = {s ∈ Σ(X) | obs(s) ∈ obs(JKϕK)} ∩ReachP

Proof. We need to show that all states that we are considering either belong

to the denotation, or are not reachable.

• s ∈ JKϕK: by definition obs(s) ∈ obs(JKϕK), therefore it belongs to

the good approximation.

205



CHAPTER 11. TEMPORAL EPISTEMIC LOGIC MODEL-CHECKING

• s 6∈ JKϕK: If there is a state s′ with the same observation (obs(s) =

obs(s′)), then s′ belongs to JKϕK∗. Since by assumption it did not

belong to the denotation, it means that either it is not reachable or

it does not satisfy Kϕ. If it is not reachable, we are done due to

the definition of good approximation. If it does not satisfy Kϕ, then

neither s′ satisfies Kϕ, since they have the same observation. Thus

we reach a contradiction.

obs(JKϕK) provides a compact way of representing a good approxima-

tion of the denotation of Kϕ, that can be used to perform model-checking:

Theorem 17. Given a POTS P and a formula ψ that contains an epis-

temic subformula Kϕ, the following holds:

P |= ψ iff P |= ψ[Kϕ/obs(JKϕK)]

Proof. Theorem 16 shows that this holds for a good approximation, and

Lemma 4 shows that the observable denotation is a good approximation.

11.2.2 Parameter Synthesis

Given a state s, we can check whether it belongs to JKAϕK by checking

whether all points in traces with the same observation satisfy ϕ. This check

can be encoded with the following LTL query:

P |= G((
∧
x∈OA

x = s(x))→ ϕ)

To compute the denotation, we need to find all the reachable states that

satisfy the above property. By considering the state variables as parame-

ters, we can see how this boils down to finding all those parameter values
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that satisfy the property: a parameter synthesis problem (Definition 5).

In many practical settings, introducing a parameter for each state variable

could lead to a big parameter synthesis problem: e.g., if the system has 100

state variables, we need 100 parameters. We can thus introduce one pa-

rameter for each state variable (obtaining a good approximation) or we can

introduce a parameter for each observable variable (obtaining an approxi-

mation of the observable denotation). Both approaches are correct, but we

can obtain significant performance improvement by considering only the

observable variables as parameters.

For each observable variable o ∈ OA, we define a parameter uo ∈ UO

of the same type as o. This makes it possible to check whether we are

in a state that is compatible with the observation (
∧
o∈OA

(o = uo)). A

valuation of the parameters γ will describe exactly one observation that

belongs to the denotation. We extend the original system P = (V, I, T,O)

by adding the parameters, obtaining P̃ = (V, UO, I, T, O). The parameters

do not have any direct impact on the transition relation, nor on the initial

conditions. The relation between the state variables and the parameters

is captured only by the property for which we perform the parameters

synthesis problem:

ρ = {γ | P̃γ |= γ(G((
∧
o∈OA

o = uo)→ ϕ))} =

{γ | P̃γ |= G((
∧
o∈OA

o = γ(uo))→ ϕ)}

Due to the shape of the property, the parameter synthesis problem might

include observations that are not reachable. If an observation is not reach-

able, the left hand-side of the implication might be vacuously false, since

we can never reach a state with the given observation. This means that the

observation, although not reachable, will be part of the solution; in this

case, we do not care about the relation between the state and the property
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ϕ. This justifies the definition of a good approximation, and motivates

Theorem 17. In order to show that this is a good approximation, we need

to show that it matches Definition 30:

Lemma 5. Let P̃ be the parametric extension of the POTS P , KAϕ be

a KL1 formula and OA the set of observable variables associated to the

observer A. Let ρ be the result of the following parameter synthesis problem:

ρ = {γ | P̃γ |= G((
∧
o∈OA

o = γ(uo))→ ϕ)}

then JKAϕK = {s ∈ Σ(X) | obs(s) ∈ ρ[uo/o]} ∩Reach

Proof. In order to prove this result, we need to show that {s ∈ Σ(X) |
obs(s) ∈ ρ[uo/o]} is a good approximation. We show that ρ[uo/o] ⊃
obs(JKAϕK), and in particular, that every observation that is present only

in ρ[uo/o] represents a set of non-reachable states.

1. If o ∈ obs(JKAϕK) then o ∈ ρ[uo/o]: follows from the definition of

parameter synthesis problem, and the fact that it is maximal, thus

the set of parameters returned is the maximal set that satisfies the

LTL property.

2. If o ∈ ρ[uo/o] \ obs(JKAϕK) then ∀s.obsA(s) = o ⇒ s 6∈ Reach. Let

us assume that s is reachable, but o is in ρ[uo/o] \ obs(JKAϕK). s

must satisfy the LTL property G((
∧
x∈OA

x = s(x)) → ϕ). This can

be the case iff i)
∧
x∈OA

x = s(x) is never true, or ii) every reachable

state with the same observation o satisfies ϕ. If i) is true, we reach

a contradiction. If ii) is true, then o belongs to obs(JKAϕK), thus

reaching a contradiction.
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The result of the lemma holds for both finite and infinite state systems.

In the infinite state case, we are computing a region over the parameters

that might be infinite, and the parameter synthesis engine might not termi-

nate. In many practical cases, the observable variables of the system have

finite domains. In these situations, the observable denotation is a finite

set, that can be constructed by enumeration [109]. For finite state sys-

tems, this guarantees termination. However, for infinite state systems, this

is not sufficient to guarantee termination, since the reachability problem for

infinite state systems is undecidable in general [123], and thus the (LTL)

underlying model-checking technique might not terminate. Notice that we

are using parameter synthesis as a black-box, therefore we can use any

off-the-shelf implementation. If ϕ is purely propositional, we can rewrite

the above problem as an invariant parameter synthesis problem. This is

relevant in practice since LTL parameter synthesis is a more difficult prob-

lem. Finally, to compute the good approximation on state variables, we

only need to change the set of parameters, and do not need to modify the

property.

11.3 Lazy Approach

Consider the propertyG(KAβ → α): every-time that the observer knows β,

then α holds. To disprove this property, eager approaches need to compute

the denotation of KAβ and then intersect it with the denotation of ¬α. The

intersection might represent only a small set of states (Figure 11.1). A lot

of the computation performed up-front might not be needed (e.g., if α is

always true). Moreover, in the case of infinite state systems, it might not

be possible to represent the set of states of the denotation. For this reason,

we develop the lazy approach, in which we compute only an approximation

of the denotation that is sufficient to verify the property. This idea makes
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KAβ ¬α

KAβ ∧ ¬α

Figure 11.1: State-set intuition behind the Lazy approach.

it possible to better deal with infinite state systems, where it might not be

possible to compute the reachable state set up-front.

Moreover, the technique is independent from the underlying model-

checking algorithm, and thus we can apply modern verification techniques

(e.g., IC3 [42]) and leverage the impressive advancements achieved in the

formal verification community.

For a system to violate a property, we need a counter-example trace.

We model-check an abstract version of the property, in which we treat all

epistemic subformulas as propositional atoms. If we find a counter-example

for this abstract property, we need to verify whether the counter-example

satisfies all epistemic subformulas or whether it is spurious. If it is not

spurious, we are done and the property is not satisfied. Otherwise, we

need to refine our abstracted property, by learning additional constraints,

and repeat. This flow is similar to the typical CEGAR [59] loop, with the

significant difference that we do not refine the model but the property. The

approach is divided into four main phases (Figure 11.2):

1. KL1 to LTL abstraction

2. LTL Verification

3. Spuriousness check

4. Property Refinement.
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1: function verify(P , ϕ)

2: ϕρ, placeholders := bool abstraction(ϕ)

3: Pρ := extend(P , placeholders)

4: loop

5: cex := Pρ |= ϕρ

6: if not cex then

7: return “Satisfied”

8: end if

9: if is spurious(P , cex, placeholders) then

10: ϕρ := learn lemma(P , cex, placeholders, ϕρ)

11: else

12: return cex

13: end if

14: end loop

15: end function

16:

17: function is spurious(P , cex, placeholders)

18: for state ∈ cex do

19: for ρKAβ ∈ placeholders do

20: p value := ρKAβ(state)

21: if not ((state ∈ JKAβK) ↔ p value) then

22: return True // Spurious!

23: end if

24: end for

25: end for

26: return False

27: end function

Figure 11.2: Lazy Algorithm Pseudo-Code

Property Abstraction

For every epistemic atom KAβ, we introduce a fresh placeholder variable

ρKAβ and obtain the abstracted property ϕρ = ϕ[KAβ/ρKAβ] by replac-

ing each epistemic formula with the corresponding placeholder (Line 2 –

bool abstraction). The system is extended by adding the placeholder

variables, that are initially unconstrained (Line 3). This corresponds to

the most general abstraction of the property: in any state the placeholder
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can be true or false. Counter-examples to the abstract property, represents

assignments for the epistemic subformulas that can violate the property.

For example, if a state of a counter-example contains a placeholder set

to true, it means that in that state we want the epistemic subformula to

hold. After this step, we have a property ϕρ that is purely LTL, and an

extended transition system (Pρ) that contains all the variables of P plus

the (unconstrained) placeholder variables.

LTL Verification

The main loop (Line 4-14) of the algorithm checks whether Pρ |= ϕρ. If we

verify the abstract property on the system, then also the original property

is satisfied. However, the converse is not true, due to spurious counter-

examples, i.e., a counter-example that is not consistent from the epistemic

point of view. For example, there is a state where the epistemic subformula

holds, but that does not belong to the denotation of the epistemic formula.

We iterate until a valid counter-example is found, or the property is shown

to hold (Pρ |= ϕρ). If no counter-example is found (Lines 6-7), then the

model satisfies the abstracted property, and therefore we can terminate: on

some systems we are able to terminate without ever checking the epistemic

part. If a counter-example exists, we need to check whether it is spurious

(Line 9). If this is the case, we can exclude the counter-example, otherwise

we have found a valid counter example.

Spuriousness Check and Refinement

To check the spuriousness of a counter-example, we need to check that

each state of the counter-example satisfies the epistemic part. This is

implemented in the function is spurious (Line 17). Each state can be

checked in isolation because the transition relation is independent from

the epistemic part. For each state of the counter-example, and for each

212



11.3. LAZY APPROACH

epistemic subformula (Lines 18-19), we extract the value of the placeholder

in the current state (p value, Line 20), and check whether the current state

belongs to the denotation. If p value is true but the state does not belong

to the denotation or, viceversa, p value is false and the state belongs to

the denotation, then we are in a spurious state, and we can exclude the

counter-example. If we validated all epistemic formulas in all the states,

then the counter-example is a real counter-example (Line 26).

To know whether a state s belongs to JKAβK, (s ∈ JKAβK) we perform

the following model-checking query:

P |= G(
∧
x∈O

x = s(x)→ β) (11.1)

Notice, that this is the same property that we use in the eager approach,

when performing parameter synthesis. Instead of obtaining all states that

satisfy the property (as in the eager approach) we check whether the current

state satisfies it. Indeed, we ask whether each reachable state that has the

same observation of s, satisfies the formula β. If P satisfies the property

(positive case), we learn the lemma
∧
x∈O x = s(x) → ρKAβ, otherwise

(negative case) we learn
∧
x∈O x = s(x) → ¬ρKAβ (these are the lemmas

returned by the learn lemma function at Line 10). These lemmas impose

additional constraints between all the states with the given observation

and the placeholder variables, thus characterizing the epistemic atoms. In

particular, if the counter-example is spurious, then we exclude it. Lemmas

are learned by updating ϕρ (Line 12), i.e., learned lemmas (λi) become

preconditions to ϕρ. Thus, in each iteration i, we have ϕiρ := λi → ϕi−1
ρ .

InvKL1

If ϕ ∈ InvKL1, the property rewriting step gives us a formula G(ψ) where

ψ is purely propositional. Since we are assuming deadlock freedom, this

encodes an invariant over reachable states and we can take advantage of
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this fact, by using ad-hoc reachability algorithms, instead of a full LTL

algorithm. This provides us with a performance boost and, more impor-

tantly, guarantees us that the counter-example will be a finite trace ending

in a state that violates ψ. During the validation of the counter-example

we need to validate only the last state of the trace, thus obtaining signif-

icant speed-ups, since the validation phase does not depend anymore on

the length of the counter-example traces.

Example

We apply the algorithm on the property: G(Kβ → α). We first rewrite

it as LTL, and introduce the placeholder variable: ϕρ = G(ρKβ → α).

The transition system P = (V, I, T,O) is extended by adding the uncon-

strained placeholder variable Pρ = (V ∪ {ρKβ}, I, T, O). The main-loop of

the procedure checks whether Pρ |= ϕρ. Let us assume that the answer is

negative, and we get the trace:

(o1, α, β, ρKβ), (¬o1,¬α, β, ρKβ)

that violates the abstract property, since the last state requires the epis-

temic formula to hold, but α does not hold. We check whether this is

a spurious counter-example, by checking the consistency of each state

of the trace. In particular, we want to know if the first state belongs

to the denotation of Kβ, since the state has observation o1, we ver-

ify whether : P |= G(o1 → β). Let us assume that this query has a

negative outcome, then we modify our property to include this lemma:

ϕ′ρ = (o1 → ¬ρKβ) → ϕρ. Since this is a spurious state, the counter-

example is considered spurious, and we need to find another counter-

example. We check Pρ |= ϕ′ρ and no counter-example is found. Thus,

we conclude that P |= G(Kβ → α).
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11.3.1 Correctness and Termination

The following two lemmas show that the lazy approach is correct, i.e.,

P |= ϕ iff the lazy algorithm terminates without a counter-example:

Lemma 6. Given P and ϕ, and the associated Pρ, ϕρ, we have that if

Pρ |= ϕρ then P |= ϕ.

Lemma 7. Let σρ be a trace of Pρ and σ be its projection on the variables

of P . If Pρ, σρ |= ¬ϕρ and, for all n ≥ 0, for all KAβ occurring in ϕ,

Pρ, σρ, n |= ρKAβ iff σ[n] ∈ JKAβKP , then P, σ |= ¬ϕ.

Lemma 7 requires that the counter-example is not spurious, and in partic-

ular, that we are able to check whether a state belongs to the denotation.

Therefore, we need to prove that the model-checking query that we use to

check whether a state belongs (or not) to the denotation is correct:

Theorem 18. Given a reachable state s of P , the following three state-

ments are equivalent:

1. s ∈ JKAβKP

2. P |= G(
∧
x∈OA

x = s(x)→ β)

3. P |= G(
∧
x∈OA

x = s(x)→ KAβ)

Proof. 1 ⇔ 3) By the definition of KL1, P |= G(
∧
x∈OA

x = s(x) → β) iff

for all σ, for all n, if obsA(σ[n]) = obsA(s), then (P, σ, n) |= KAβ. Then,

by the definition of JKAβKP , the condition 1 holds iff s is reachable and 2

holds.

2 ⇒ 3) Consider a trace σ and an integer n such that obsA(σ[n]) =

obsA(s). Since the condition 2 holds, then for all σ′, for all n′, if

obsA(σ′[n′]) = obsA(s), then (P, σ′, n′) |= β; thus, for all σ′, for all n′,

if obsA(σ′[n′]) = obsA(σ[n]), then (P, σ′, n′) |= β. Thus, (P, σ, n) |= KAβ.
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3⇒ 2) The condition 2 follows directly from 3 and the fact that KAβ →
β is a tautology for all β (Axiom of knowledge T).

Theorem 19. Given a reachable state s of P , the following three state-

ments are equivalent:

1. s 6∈ JKAβKP

2. P 6|= G(
∧
x∈OA

x = s(x)→ β)

3. P |= G(
∧
x∈OA

x = s(x)→ ¬KAβ)

Proof. 1⇔ 3) follows from Theorem 18 by contraposition.

2 ⇒ 3) Consider a trace σ and an integer n such that obsA(σ[n]) =

obsA(s). Since the condition 2 holds, then there exists σ′ and n′ such that

obsA(σ′[n′]) = obsA(s) and (P, σ′, n′) 6|= β; thus, it is not true that for

all σ′, for all n′, if obsA(σ′[n′]) = obsA(σ[n]), then (P, σ′, n′) |= β. Thus,

(P, σ, n) |= ¬KAβ.

3 ⇒ 2) Suppose by contradiction that P |= G(
∧
x∈OA

x = s(x) →
β). Thus, by Theorem 18, P |= G(

∧
x∈OA

x = s(x) → KAβ). Since s is

reachable, then there exists σ and n such that σ[n] = s. Thus (P, σ, n) |=
KAβ and, by the condition 3, (P, σ, n) |= ¬KAβ, which is a contradiction.

Finally, we need to show that the lemmas that we are adding to exclude

a spurious counter-example are correct, i.e., the abstract model-checking

problem is still a sound over-approximation of the concrete model-checking

problem. More precisely, if we use the lemma to restrict the abstract state

space and the abstract model-checking passes, then we can still conclude

that P |= ϕ:

Theorem 20. (Positive case) Assume that P |= G(
∧
x∈O x = s(x) → β)

and Pρ |= G(
∧
x∈O x = s(x)→ ρKβ)→ ϕρ Then P |= ϕ.
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Proof. (Positive case) If Pρ |= G(
∧
x∈O x = s(x) → ρKβ) → ϕρ, then i)

P |= G(
∧
x∈O x = s(x) → Kβ) → ϕ (by Theorem 6). If P |= G(

∧
x∈O x =

s(x)→ β), then ii) P |= G(
∧
x∈O x = s(x)→ Kβ) (by Theorem 18). From

i) and ii), we can deduce that P |= ϕ.

Theorem 21. (Negative case) Assume that P 6|= G(
∧
x∈O x = s(x) → β)

and Pρ |= G(
∧
x∈O x = s(x)→ ¬ρKβ)→ ϕρ Then P |= ϕ.

Proof. (Negative case) If Pρ |= G(
∧
x∈O x = s(x) → ¬ρKβ) → ϕρ, then i)

P |= G(
∧
x∈O x = s(x)→ ¬Kβ)→ ϕ (by Theorem 6). If P 6|= G(

∧
x∈O x =

s(x) → β), then ii) P |= G(
∧
x∈O x = s(x) → ¬Kβ) (by Theorem 19).

From i) and ii), we can deduce that P |= ϕ.

Termination

System InvKL1 KL1

Finite Complete Complete

Infinite w/ Finite Domain Obs. Relative Complete Incomplete

Infinite w/ Infinite Domain Obs. Incomplete Incomplete

Table 11.1: Completeness

Our algorithm is guaranteed to terminate on finite state systems, since

there is a finite number of possible values for observations and placeholders.

Model checking for infinite state systems is in general undecidable, there-

fore we have the problem that the internal model-checking calls might not

terminate. In practice, model-checkers for infinite state systems (e.g., UP-

PAAL [16], SAL [67], nuXmv [47]) can terminate on particular instances or

classes of models. We call relative complete an algorithm that terminates

assuming that all the model-checking queries terminate. Our approach is
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relative complete for infinite state systems only if we have both finite do-

main observations, and finite counter-examples (as in the case of InvKL1).

Otherwise, the algorithm is incomplete, since we might need to enumerate

infinitely many observations, or validate infinitely many states. Figure 11.1

summarizes the result. Despite the theoretical result, we will show in Sec-

tion 11.4, that our approach is able in practice to verify many models of

interest.

11.3.2 Optimizations

In order for the Lazy approach to be competitive, we need to minimize

the number of queries that we perform to the model-checker, and be able

to learn as much as possible from each query. The following are a few

optimizations that we developed in order to achieve these objectives.

Static Learning

The placeholder variables are initially unconstrained. However, there are

some facts that we can learn by looking at the property, for example, the

axioms of epistemic logic. First, we know that Kβ → β. This translates

into the constraint: ρKβ → β. This ensures that we never need to validate

a counter-example in which ρKβ and ¬β. Moreover, if o is a Boolean

observable for the agent A, then KAo ↔ o. Thus, we add the constraints

ρKo ↔ o for each observable variable of the observer A.

Lemma Generalization

During refinement we learn something about a single observation. We gen-

eralize this to cover a bigger space of the observations, relating multiple

observations to the value of the placeholder. For a state s and an observa-

tion o, we generalize the lemma o→ ρKβ into o1∨· · ·∨on → ρKβ (similarly
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for the negative case).

The main technique that we use to perform the generalization is pa-

rameter synthesis. Given the observation o, we remove some element, and

perform the parameter synthesis starting from a partial assignment. We

partition the set of observables in the ones we fix and the one we param-

eterize: O = OF ∪ OP , OF ∩ OP = ∅. For Kβ we solve the following

parameter synthesis problem:

ω = {o′ | P |= G((
∧
x∈OF

o(x) = x ∧
∧
x∈OP

o′(x) = x)→ β)}

where o′ is an assignment to the OP variables. In practice, we obtain the

region ω of assignments to OP that (together with o) imply β. Since the

region is maximal, all other assignments to OP do not entail β. Therefore,

we learn the lemma: o→ (ω ↔ ρKβ).

Choosing the partition into OF and OP is an interesting point of re-

search, which we leave as future work. We propose a simple baseline

heuristic, in which we randomly select a number w of observable variables.

The choice of w is also heuristic, since a small value will cause overhead

without gaining much generalization, while a big value will quickly lead to

too many parameters. Indeed, picking OP = O (i.e., using all observable

variables as parameters) is equivalent to solving the problem using the ea-

ger approach. In our implementation, we pick w as the logarithm of the

iterations performed so far. In the future, we plan to study the impact of

other heuristics like Luby series [118].

Dual-Rail Encoding

Validating a long counter-example is expensive. However, not all

states might need to be validated. Let us consider the property:

a ∧ Xa ∧ XXKb. A counter-example to this might be the trace:

219



CHAPTER 11. TEMPORAL EPISTEMIC LOGIC MODEL-CHECKING

(a, b, ρKb), (a, b,¬ρKb), (a,¬b,¬ρKb). The satisfaction of the epistemic sub-

formula in the first two states is irrelevant. We would like the model-checker

to identify those states so that we can skip them. Thus, we provide a way

for the counter-example to contain don’t care information, transforming

the trace above to:

(a, b,−), (a, b,−), (a,¬b,¬ρKb)

This saves us from checking the first two states, and can be a significant

saving when the traces are long. We use the Dual-Rail encoding [135] to

encode three values: True, False and Don’t Care. For a placeholder ρi

we introduce the variables ρTruei and ρFalsei , that are mutually exclusive.

If ρTruei is true, then the placeholder is true; if ρFalsei is true, then the

placeholder is false; if both are false, then the placeholder has a do not care

value. We then modify the is spurious function to handle the special case

in which the placeholder is set to don’t care, by considering the epistemic

subformula as satisfied.

Positive Generalization via UNSAT-Cores

For epistemic atoms encoding safety properties, we can perform a more

aggressive lemma generalization in case of a positive outcome from the

placeholder query. If β is a safety property, when showing that P |= G(o→
β) holds, an IC3-based model-checker will also provide us with an inductive

invariant ι as witness. Since ι is an inductive invariant, ι→ (o→ β). We

use unsat-core extraction to obtain a subset of the observations o that

make the above unsatisfiable. In fact, ι ∧ o ∧ ¬β is unsatisfiable, and we

obtain an unsat-core expressed over the observable variables that justifies

the unsatisfiability [23]. Let us call o′ such an unsat-core. By definition,

we have that ι ∧ o′ → β. Therefore, o′ is a generalization of o. Moreover,

the unsat core extraction is a purely combinational problem, that can be
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efficiently handled by a SAT or SMT solver.

Voters Example

In the voters example (Section 11.1), there are infinitely many voting com-

binations that constitute a counter-example. The positive lemma UNSAT-

Core generalization can help us quickly find the problem, by generating

the lemma:

(result = 0 ∧ guess = 0)→ ρK

that justifies the counterexample. Let us assume that at least one voter

did not vote 0. We rewrite the property as:

P |= G(voted ∧ (
∨

v∈voter
votev 6= 0)→ ¬Kjuryvote1 = guess)

To show that no other counter-example exists, we would need to check

all possible values of the votes, that are infinitely many. The negative

generalization based on parameter synthesis allows us to terminate, by

showing that any other voting is good.

11.3.3 Lazy Model-Checking of KLn

Let us consider the voters example, and assume that there are only 2 voters.

Each voter has access to its own vote, and to the total sum of the votes.

In this case, the sum of the votes provides all the necessary information

for each of the voters to know what the other voted. This follows from the

fact that result = vote1 + vote2, thus if vote1 = 0 then vote2 = result.

G(K1(vote2 = (res− vote1)) ∧K2(vote1 = (res− vote2)))

moreover, each voter knows that the other voter knows the vote. The

simplest example is if vote1 = 0:

G(vote1 = 0→ (K1(vote2 = res) ∧K1K2(vote1 = 0)))
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However, the jury does not know what each of them voted, assuming that

one voted not zero and the other an arbitrary value p.

G(vote1 6= 0 ∧ vote2 = p→ (¬Kjury(vote2 = p)))

To reason on this example, we need to extend the lazy approach to

KLn, and in particular to KL2. This can be achieved by realizing that

the lazy approach uses a solver for KLn−1 in order to reason about KLn.

For example, to reason about KL1, we use an LTL (KL0) model-checker.

To check whether a state belongs to the denotation of Kβ we use the

query 11.1, that checks an LTL property over the original system. To

extend the approach to KLn, we need to perform a KLn−1 query on the

system. For KL2 we obtain:

P |=KL1
G(
∧
x∈O

x = s(x)→ β) (11.2)

The formula:

G(vote1 = 0→ (K1(vote2 = res) ∧K1K2(vote1 = 0)))

is rewritten by introducing the following placeholder variables:

• ρK1(vote2=res)

• ρK2(vote1=0)

• ρK1ρK2(vote1=0)

obtaining:

G(vote1 = 0→ (ρK1(vote2=res) ∧ ρK1ρK2(vote1=0)
))

During the spuriousness check, we will need to validate the value for the

placeholder ρK1ρK2(vote1=0)
:

P |=KL1
G(
∧
x∈O1

x = s(x)→ K2(vote1 = 0))
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Notice that we chose a rather simple β. However, we might have multiple

epistemic and temporal operators, e.g., in the case ofK1((FK2p)∨(GK3p)).

We are not aware of properties (in the literature or in practice) that

require several levels of nesting (e.g., n > 3). Therefore, we believe that

this recursive approach can be applied in practice. To achieve efficiency,

however, optimizations need to be identified. In particular, we believe that

a promising direction consists in the extension of static learning in order to

account for axioms of relative knowledge. Exploring those optimizations is

left as future work.

11.4 Experimental Analysis

A prototype implementation of our KL1 model-checking algorithms was

developed on top of on nuXmv [47] and related extensions for parameter

synthesis using IC3 for infinite state systems [50].

We evaluated the scalability of the approach on infinite state models

for both KL1 and InvKL1 properties, expressed over infinite state models

using the theory of Linear Rational Arithmetic [73].

For the eager approach, we first show that expressing the parameter

synthesis problem only on the observable variables (and not on all state

variables) yields substantial performance gains. In this case, we report

only the time required to perform the parameter synthesis step, since once

the denotation is available, it is possible to apply any model-checking al-

gorithm. In our case, we applied IC3, and the runtime of the verification

part was negligible. The eager approach is then compared against existing

BDD-based implementations, for systems in which there only few observ-

ables variables.

For the lazy approach, we compare the different optimizations to iden-

tify a competitive configuration. Once we identified a good configuration,
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we compare it with the eager, and show that we can reach substantial

performance improvements.

Finally, we compared our approach against the latest versions of two

state-of-the-art model checkers: MCK [88]1 and MCMAS [116]. MCK im-

plements various techniques for multiple types of temporal epistemic logic,

not only limited to observational semantics. MCMAS implements BDD-

based techniques for model-checking CTLK with observational semantics.

CTLK is the epistemic extension of CTL. While the comparison with MCK

is based on the same logic (KL1), the comparison with MCMAS required

us to translate the properties into CTLK. Nevertheless, the properties that

we verified fall in the fragment that can be expressed in both logics.

11.4.1 Setup and Benchmarks

Experiments were executed on a 2.5Ghz Intel Xeon CPU, with a timeout

of 1 hour, unless differently stated.2

The Battery-Sensor model (described in Section 4.5) encodes a typical

subsystem found in aerospace designs, in which a set of redundant sensors

are powered by a redundant power supply unit containing batteries that are

modeled using real-valued variables. We study multiple properties related

to faults in the system, for example:

G(fault gen1 → Kfault gen1)

G(K(gen1.off ∧ gen2.off)→ KX10(¬device.on))

G(fault psu→ FKO(fault psu))

The charge of the batteries is modeled using real-valued variables. We

develop two models. In the first model, we assume that the diagnoser

has a sensor that can provide the exact charge level of the battery. In

1We would like to thank Ron van der Meyden and Xiaowei Huang, for providing and supporting us

with the use of an updated private version of MCK.
2Tools and Benchmarks are available at http://marco.gario.org/phd/.
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common monitoring systems, however, the observers are rarely with infinite

precision. Therefore, in the second model, the observations are simplified

into three thresholds: low, mid and high (Bool Obs in Fig. 11.3). This is

in-line with the type of monitoring defined in the PUS standard.

The second benchmark is a set of magicboxes [32], where a ball moves

through a predefined pattern defined on a bi-dimensional grid. The ex-

ternal observer can only perform row and column observations, where row

observation do not provide information on the column (and viceversa).

The reasoner needs to consider the predefined path inside the magicbox

and the available row/column information to try to identify the location

of the ball. Scaling the size of the magicbox enables stressing the algo-

rithms. For each magicbox we generate also an MCK and MCMAS model

and test whether it is possible to know that the ball is in a given cell:

G(target cell→ Ktarget cell).

The Dining Cryptographers is a well studied problem in temporal epis-

temic logic [154]. A group of cryptographers gathered for a dinner and

they are wondering if one of them paid the bill or whether the NSA paid.

They devise a protocol to acquire this information, without the need of

revealing the identity of the cryptographer that paid (if one did). We gen-

erated instances also for MCMAS3 and MCK, for an increasing number of

cryptographers (up to 400) and verify whether if one cryptographer paid,

he knows that nobody else did:

G((done ∧ paid1)→ K1¬(
∨

i∈[2..n]

paidi))

and whether if a cryptographer paid, then it can eventually know that

somebody else paid: paid1 → XF (K1paid2).

3We would like to thank Franco Raimondi, for providing us with a generator of DC problems for

MCMAS.
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11.4.2 Eager Approach

Real Obs Bool Obs

Fault State (32) Obs (10) State (32) Obs (6)

Gen 1 T.O. 10.4 T.O. 1.9

Gen 2 T.O. 13.6 T.O. 2.1

Batt 1 T.O. 11.7 T.O. 1.3

Batt 2 T.O. 13.3 T.O. 1.5

Sens 1 T.O. 13.8 T.O. 1.7

Sens 2 T.O. 12.1 T.O. 1.9

Figure 11.3: Battery Sensor Runtime (seconds) and # of parameters in parenthesis.

Battery Sensor. Figure 11.3 reports the results of computing the denota-

tion on the both the model with finite and infinite domain observations.

The computation of the good approximation directly on the state variables

cannot be concluded in this model under a time-out of 30 minutes. Instead,

the observable denotation is computed in slightly more than 10s. The re-

sults for this case show that this type of problem can easily be handled

with our technique using the observable denotation.

Magicbox. Figure 11.4 provides the count of variables used in each param-

eter synthesis problem. Figure 11.5 shows that the number of observables

has a significant impact on both techniques. Intuitively, in the 60% case,

the denotation is smaller. This benefits the observational denotation ap-

proach, while hinders the state denotation one. This is due to the fact

that the parameter synthesis algorithm that we use works by complement:

it needs to exclude many more states. Independently of the number of

observables that we consider, the algorithm based on the state denotation

always runs into time-out for the 20x20 case. To get a better idea of the

relative performances we focus on a set of magicboxes of size between 10x10

and 19x19, with 90% and 80% of observability, and compare the runtime

over 240 instances (Figure 11.6).
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Benchmark Family 90% 80% 80%

State Obs State Obs State Obs

10x10 22 18 22 16 22 12

20x20 42 36 42 32 42 24

30x30 62 54 62 58 62 36

Figure 11.4: Magicbox: # Parameters.

90% 80% 60%

Instance State Obs State Obs State Obs

10x10 Goal A 13.5 4.4 67.1 4.4 T.O. 3.8

10x10 Goal B 15.6 4.5 68.4 4.3 T.O. 3.7

10x10 Goal C 15.9 5.0 58.5 4.3 T.O. 4.0

20x20 Goal A T.O. 81.0 T.O. 76.1 T.O. 50.3

20x20 Goal B T.O. 83.3 T.O. 80.7 T.O. 52.1

20x20 Goal C T.O. 80.7 T.O. 80.6 T.O. 52.3

30x30 Goal A T.O. 544.0 T.O. 524.1 T.O. 344.9

30x30 Goal B T.O. 579.3 T.O. 509.1 T.O. 387.6

30x30 Goal C T.O. 578.3 T.O. 465.5 T.O. 367.3

Figure 11.5: Magicbox: Runtime (seconds).

Finite State. By considering the impact of the parameters on the the pre-

vious benchmarks, we expect our IC3-based parameter synthesis engine to

perform well on problems of considerable size, as long as the number of

the parameters is small. The comparison against BDD-based approaches

implemented in MCK and MCMAS is carried out on a benchmark of finite-

state magicboxes with 10% observable variables. Since the parameter syn-

thesis engine is much more efficient in the finite case, we are able to signif-

icantly increase the size of the problems that we are able to handle when

compared to infinite state models. Figure 11.7 shows the general trend of

the runtime in seconds, where we can see that for this type of problems

our parameter synthesis technique outperforms BDD-based approaches.

In summary, the experimental evaluation justifies the use of the observ-

able denotation, instead of the naive approach of computing the denotation

on state variables. Moreover, for problems in which the observable part is

significantly smaller than the non-observable part, the eager technique can

perform better than BDD-based approaches.
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Figure 11.6: Magicbox: 10x10 to 19x19.

Size Eager MCK MCMAS

100 23.88 106.59 1367.2

100 23.74 109.54 937.75

100 23.08 106.57 992.07

110 25.77 137.94 1723.66

110 25.56 149.46 1758.38

110 26.43 158.02 1410.05

120 31.24 234.27 2224.14

120 35.7 224.14 2293.25

120 33.42 186.47 2626.03

Size Eager MCK MCMAS

130 38.96 258.41 2050.74

130 41.57 234.9 2206.66

130 43.24 276.71 3215.02

140 53.77 310.37 T.O.

140 48.98 282.5 2192.66

140 57.06 332.28 3178.17

150 64.48 408.09 T.O.

150 65.15 364.47 3443.91

150 65.73 411.45 3083.88

Figure 11.7: Comparison with MCK and MCMAS (TO: 3600s).

11.4.3 Lazy Approach

Optimizations Evaluation

To study the impact of all optimizations, we identified two main configura-

tions and evaluated them on the complete benchmark set (Table 11.2). For

full KL1, we perform static learning, generalization and use the dual-rail

encoding. For InvKL1, we also perform static learning and generalization,

but disable dual-rail encoding. Moreover, for InvKL1, we only perform the

validation of the last state of the trace.

To study the quality of these configurations, we proceed as follows. We
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Static Learning Generalization Dual-Rail Last-State

KL1 3 3 3 7

InvKL1 3 3 7 3

Table 11.2: Lazy Configuration Summary
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Figure 11.9: InvKL1 Optimization.

compare our chosen configuration (Lazy Best) against all other possible

configurations (i.e., for InvKL1, we have 16 configurations in total). For

each benchmark problem, we select the best configuration that is different

from Lazy Best. We call that configuration Virtual Second Best Solver

(VSBS). We compare Lazy Best and VSBS in Figure 11.8. Lazy Best

times out in only 10 instances out of 349, while the VSBS times out in

20. Generalization sometimes adds significant overhead. We also compare

the strategy of validating the whole trace vs. the last state (Figure 11.9):

the latter can significantly pay off. The exceptions are cases in which a

single counter-example is sufficient to learn everything needed to prove the

property.

Generalization is fundamental to be able to solve the Dining Cryptogra-

phers benchmarks. In fact (Figure 11.10), applying generalization we are
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#DC Lazy w/o Gen. Lazy w/ Gen.

3 0.26 0.15

5 1.01 0.15

7 6.07 0.13

9 58.03 0.15

11 1358.11 0.15

13 TO 0.15

Figure 11.10: DCs InvKL1 properties

(sec.)

Recall #Obs Lazy Basic Lazy Best

0 11 3.28 1.46

5 66 3536.17 52.72

10 121 TO 103.47

20 231 TO 288.31

40 451 TO 981.11

Figure 11.11: Bounded Recall BS: Opti-

mizations Impact (sec.)

able to solve all DC problems (up-to 400 cryptographers), while without

generalization our approach times out when reaching 13 cryptographers.

For the infinite state benchmark (Battery Sensor), we considered prob-

lems with increasing bounded recall. Increasing the recall, increases the

size of the model and the number of observables (Figure 11.11). Without

any optimization, the algorithm times out with recall 6 (∼80 obs. vari-

ables), while with our chosen configuration, we can verify up to recall 40

(i.e., an infinite state model with 20 Real-valued variables and more than

500 Boolean variables).

Eager Approach

In Figure 11.12, we can see that the lazy approach scales better when in-

creasing the problem size, i.e., for a recall of 5 the lazy approach terminates

in less than a minute, while the eager approach reaches the timeout of 1

hour.

Finite State

In the finite case, we get excellent performances when compared to MCK

and MCMAS. The comparison on all finite state problems (magicboxes and

dining cryptographers) for MCK and MCMAS is given in Figures 11.13

and 11.14. In many cases our approach can provide up-to two orders of
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Recall Eager Lazy

0 3.38 1.46

1 29.48 2.18

2 153.16 5.15

3 661.28 10.24

4 3028.94 13.44

5 T.O. 52.72

Figure 11.12: Bounded Recall BS: Eager vs Lazy (sec.)

magnitude improvement, and solves all the 118 instances, while MCMAS

times out on 20, and MCK on 66. We highlight the results for the dining

cryptographers benchmark in Figure 11.15, in which MCMAS is able to

verify models only up-to 240 dining cryptographers (MCK is not included

because it times-out at 20). The lazy approach can verify problem with

400 cryptographers in slightly more than 10 minutes.
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Figure 11.13: Lazy vs MCK (66/118 T.O.)
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Figure 11.14: Lazy vs MCMAS (20/118 T.O.)

11.5 Chapter Summary

In this chapter, we presented two approaches for model checking the tempo-

ral epistemic logic KL1 under observational semantics. These are the first

approaches for KL1 model checking over infinite state transition systems.

We focus on KL1 and on its fragment InvKL1, because of their practical

relevance both within this thesis and in the literature.

The eager approach is characterized by an up-front computation of the

denotation of states satisfying the epistemic atom. This approach relies

on the availability of a parameter synthesis engine as a black-box. Two

variants of this approach were presented. First, we focus on the concept of

good approximation, in order to characterize an over-approximation of the

denotation expressed on state variables. Then, we present the observable

denotation that is an over-approximation of the denotation expressed on

the observable variables. Since the observable denotation is expressed on a

smaller set of variables, it provides a simpler parameter synthesis problem.

The lazy approach is characterized by an on-demand computation of

232



11.5. CHAPTER SUMMARY

#DC MCMAS Lazy

40 3.66 1.83

80 26.57 8.54

120 169.43 25.9

160 322.45 55.2

200 528.42 104.02

240 1582.68 174.86

280 T.O. 287.06

320 T.O. 391.57

360 T.O. 598.4

400 T.O. 765.96

Figure 11.15: DCs Runtime for KL1 properties (sec.)

the pieces of the denotation that are needed to disprove a property. This

approach relies on the availability of a model-checker as a black-box. The

basic algorithm is described and exemplified. Moreover, we discuss several

optimizations (i.e., static learning, generalization, and dual-rail encoding)

that are important to achieve efficient reasoning.

In the experimental evaluation we compared these algorithms, against

each other. Moreover, we compared the approach against state-of-the-art

BDD-based model-checkers, showing that our approach is competitive, and

allows reasoning over models that are out of reach for BDD-based engines.

There are several directions for future work, starting from the optimiza-

tions described in this Chapter that could be improved and extended. First,

lemma generalization currently selects a random set of variables in order

to perform the parameter synthesis problem. In the SAT community, sev-

eral techniques and ideas have been explored to perform variable selection,

e.g., variable activity. It would be interesting to study heuristics for this

selection that can take into account, for example, how often the variable

appears in the counter-examples. Second, the UNSAT-core generalization

presented here works only for InvKL1, since it relies on the inductive in-
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variant obtained from IC3. Since the verification of KL1 queries is done

via K-Liveness [58], we do not obtain an inductive invariant. Therefore,

the underlying model-checking algorithm should be extended accordingly.

Third, bounded recall is currently handled by introducing new variables

in the model. However, bounded recall is only relevant when checking

spuriousness of the counter-example. In this case, we could extract the

observations list from the counter-example, and check whether the series

of observations belong to the denotation, by extending the query to the

model-checker. This should allow us to keep the model small, even when

considering long windows for multiple agents.

Finally, it would be interesting to evaluate whether this general tech-

nique could also be applicable to other types of modal logics, in which the

truth of the modal subformula can be related to the state information, as

we do here between epistemic expressions and observations.
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Chapter 12

Conclusions and Future Work

This thesis provides a formal foundation for the design of FDI components

based on temporal epistemic logic. This work has been motivated by the

industrial need for a better process for FDI design. The theoretical aspects

of the formalization have been shown together with their practical usage

within the industrial projects.

Temporal epistemic logic is a suitable logic for the design of FDI com-

ponents, thanks to its ability of describing reasoning about partially ob-

servable systems. This is also demonstrated by the close relation between

FDI synthesis algorithm and TEL model-checking approaches.

Table 12.1 summarizes the relation between recall, design task, plant

and associated reasoning technique. With the contribution of this thesis,

it is possible to close the bounded recall case, in all its parts. For perfect-

recall, we cover most of the process, but have some open points concerning

synthesis and verification of infinite state systems. Table 12.2 provides a

simplified overview of the results when limiting our specification to ASL

(the fragment of ASLK expressible in LTL – Table 6.1). Similarly, Ta-

ble 12.3 shows a simplified overview when considering the whole ASLK ,

stressing the fact that the open points concern only the combination of

infinite state systems and perfect recall. In all these tables, the notation

235



CHAPTER 12. CONCLUSIONS AND FUTURE WORK

“Abstraction” is meant to stress that, for example in the TFPG case, we

can perform abstraction of the infinite state system and apply finite state

techniques.

Table 12.1: Summary Table
Recall Task Plant Sys. Diagnosable Logic / Problem Tool / Algorithm

BR Diagnosability Finite No KL1 MCK/MCMAS/Lazy

Yes LTL NuSMV

Infinite No KL1 Lazy

Yes LTL nuXmv

Verification Finite No KL1 MCK/MCMAS/Lazy

Yes LTL NuSMV

Infinite No KL1 Lazy

Yes LTL nuXmv

Synthesis Finite No Parameter Synthesis nuXmv

Yes Parameter Synthesis nuXmv

Infinite No Parameter Synthesis nuXmv

Yes Parameter Synthesis nuXmv

PR Diagnosability Finite No KL1 MCK

Yes LTL NuSMV

Infinite No KL1 OPEN

Yes LTL nuXmv

Verification Finite No KL1 MCK

Yes LTL NuSMV

Infinite No KL1 OPEN

Yes LTL nuXmv

Synthesis Finite No Belief Explorer xSAP

Yes Belief Explorer xSAP

Infinite No OPEN OPEN/Abstraction

Yes OPEN OPEN/Abstraction

12.1 Contributions

Formal characterization of properties of FDI Several key aspects of the

FDI were formally characterized in terms of properties of an input/output

transition system, that consumes observations and produces alarms. These

properties include recall, correctness, completeness, delay, maximality, sys-

tem and trace diagnosability, and context.
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Table 12.2: Simplified Table for ASL

Recall Task Plant Logic / Problem Tool / Algorithm

0R Diagnosability Infinite LTL nuXmv

Verification Infinite LTL nuXmv

Synthesis Infinite Parameter Synthesis nuXmv

PR Diagnosability Infinite LTL nuXmv

Verification Infinite LTL nuXmv

Synthesis Finite Belief Explorer xSAP

Infinite OPEN OPEN/Abstraction

Table 12.3: Simplified Table for ASLK
Recall Task Plant Logic / Problem Tool / Algorithm

0R Diagnosability Infinite KL1 Lazy

Verification Infinite KL1 Lazy

Synthesis Infinite Parameter Synthesis nuXmv

PR Diagnosability Finite KL1 MCK

Infinite KL1 OPEN

Verification Finite KL1 MCK

Infinite KL1 OPEN

Synthesis Finite Belief Explorer xSAP

Infinite OPEN OPEN/Abstraction

ASLK The pattern-based Alarm Specification Language (ASLK) was in-

troduce to enable a simple way of specifying alarm conditions. Using the

ASLK semantics based on temporal epistemic logic, we are able to perform

automated reasoning, including validation and verification, for different

types of recall in a unified way.

Synthesis Algorithms for the synthesis of FDI components were presented.

These algorithms are able to build an FDI that satisfy an ASLK specifica-

tion by construction. We presented algorithms for bounded-recall for both

infinite and finite state systems. Moreover, we explained an approach for
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perfect-recall for finite state systems, and explained the challenges related

to extending this approach to infinite state systems.

Diagnosability The classical approach for diagnosability (i.e., the twin-

plant approach) was extended in order to deal with different types of ASLK

specifications and recall. Using the new properties on the twin-plant, we

are able to perform optimization of the sensors to be used by the diagnoser.

We presented and evaluated an algorithm for Pareto Optimal Sensor Place-

ment, where we want to optimize multiple cost functions at the same time.

Timed Failure Propagation Graphs Techniques for the validation of TFPGs

based on SMT engines were presented and experimentally evaluated. We

discussed also the use of the TFPGs as an abstraction of the system, in

order to apply techniques for the finite state systems on timed systems.

Industrial Applications Many techniques presented in this thesis were used

within the two ESA-funded projects AUTOGEF and FAME. We discussed

the two projects and outline a general flow in which our formal approach

can be applied.

KL1 Model-Checking for infinite state systems The first approach for

model-checking of KL1 with observational semantics over infinite state

transition systems was presented and experimentally evaluated. A first

version based on the eager computation of the denotation was presented

and evaluated. We then showed how we do not need to perform the com-

putation up-front, but can do it lazily. The lazy approach, together with

several optimization, was presented and evaluated, showing excellent per-

formances.
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12.2 Future Work

Several interesting research directions open-up from here. In the domain

of FDI design, an important step would be to apply our approach to more

case-studies, in order to better identify potential limitations and bottle-

necks of the process.

In this thesis we focused mainly on FDI. However, for the FDIR to be

successful, it is important to consider the integration between FDI and

FR, and provide a stronger foundation to FR specification and design.

Although techniques have been developed and implemented in the planning

and scheduling community, we believe that the main problem lies in how

to properly specify what the FR can and should do. As an example, the

concept of a recovery being successful is usually attached to the resolution

of a potentially negative event. In a sense, the goal is not to reach a pre-

defined target configuration, but it is to prevent something from happening.

This is a slightly different approach than the one commonly adopted in the

AI planning community.

Architectural Decomposition A concept that we did do not address is the

architectural decomposition of the FDIR. Current FDIR design are strat-

ified in multiple levels, depending on who is in charge of detecting and

recovering from the faults. However, these levels are not commonly agreed

upon, and their definition is usually more related to what they do rather

than the objective they should achieve. Reasoning on a hierarchy of FDIR

is an interesting challenge, that involves properly defining these concepts.

The benefit, however, could be multiple. For example, by localizing the

analysis to a sub-system, we could gain in performance during model-

checking and synthesis. Additionally, new types of redundancy could be

introduced, making the FDIR more robust and trustworthy.
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Continuous Time Timed transition systems are a special type of infinite

state transition systems. They have nice properties, and a vast literature

exists dedicated to efficient algorithms and data-structures for reasoning

on them. In this thesis, we only briefly touched the topic of timed be-

havior when discussing TFPGs and the FAME project. Timing aspects

should be integrated better in the type of FDI that we want to build. This

includes, for example, extending the underlying formalism to continuous

time epistemic logic.

Prognosis In this thesis, alarms are associated to diagnosis conditions that

talk about past events. By using diagnosis conditions that talk about the

future events, one can imagine extending our framework to prognosis, i.e.,

the ability to anticipate the occurrence of a bad state. One main road-

blocks when dealing with prognosis in this setting is the need to consider

fairness constraints over the system model. Moreover, it is really difficult

to predict something in a certain way. This suggests that, especially in the

context of prognosis, we might be interested into moving into a quantitative

setting, in which we can estimate the likelihood of reaching a bad state in

the future.

Synthesis Algorithm The synthesis algorithm for perfect-recall on infinite

state systems is an interesting direction of research and we discussed several

ideas in Chapter 8. The same techniques used for synthesis can then be ap-

plied to model-checking. Techniques like abstraction, however, should not

be limited to perfect-recall. Although we have technique for bounded-recall

FDI synthesis, more work should be devoted in making those techniques

more efficient. In turn, this will help to apply them to bigger and more

complex designs.
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Temporal Epistemic Models One of the main challenges that we faced

while developing the algorithms for KL1 model-checking was the limited

availability of industrial models (and properties) using temporal epistemic

logic. We believe this is due to two main factors. First, tools have different

modeling languages, that are not always compatible. This requires a sub-

stantial amount of re-modeling. In this respect, MCK started supporting a

symbolic format oriented towards symbolic transition systems. We believe

that the existence of a common format can lead to drastic improvements

(as demonstrated by both the SAT and SMT community). In particular,

we are interested in foster the compatibility with SMV-like languages. Sec-

ond, models tend to be released when they can be analyzed by the tools.

Therefore, hard models tend not to be distributed. The same goes for

specifications that cannot be reasoned upon. In particular, our decision to

focus on KL1 was in part motivated by its popularity in the benchmarks

and the lack of general KLn properties.

Lazy Temporal Epistemic Model Checking The tooling discussed in this

thesis is a prototype, and a better integration with the nuXmv engine

is planned in the future, in order to better integrate the temporal epis-

temic model-checking in the design process, and to leverage the continuous

improvements in the area. In this direction, it would be interesting to

explore possibilities to combine more tightly the IC3 algorithm with the

lazy approach. In particular, several aspects of the IC3 algorithm could

be extended, such as the use of generalized counter-examples, and the use

of the approximation of the reachable states (kept internally by the en-

gine) to decide epistemic atoms. On the Lazy algorithm itself, we plan to

study additional techniques and heuristic for the generalization of counter-

examples. By improving the performances for the KL1 case, we expect to

be able to better support KLn in the future.
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versus analytical redundancy relations: a comparative analysis of

the model based diagnosis approach from the artificial intelligence

and automatic control perspectives. Systems, Man, and Cybernetics,

Part B: Cybernetics, IEEE Transactions on, 34(5):2163–2177, 2004.

[64] Johan De Kleer, Alan K Mackworth, and Raymond Reiter. Charac-

terizing diagnoses and systems. Artificial Intelligence, 56(2):197–222,

1992.

[65] Johan De Kleer and Brian C Williams. Diagnosing multiple faults.

Artificial intelligence, 32(1):97–130, 1987.

[66] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT

solver. In Tools and Algorithms for the Construction and Analysis of

Systems, pages 337–340. Springer, 2008.

[67] Leonardo De Moura, Sam Owre, Harald Rueß, John Rushby, Natara-

jan Shankar, Maria Sorea, and Ashish Tiwari. Sal 2. In Computer

aided verification, pages 496–500. Springer, 2004.

[68] MCK Developers. MCK 1.0.0: User Manual, 2012.

251

http://compass.informatik.rwth-aachen.de
http://compass.informatik.rwth-aachen.de


BIBLIOGRAPHY
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